Strongly Typed
Nano-passes

Daniel Mercier & Boris Yakobowski

November 7

Adacore info@adacore .com @ adacore .com

https://www.adacore.com/

Context : Infer

Static analysis tool developed by Facebook

Tailored for a small amount of false positives

Facebook's version supports Java, C/C++/0Objective-C and Erlang

Open source: https://github.com/facebook/infer

Common IR for all languages: SIL

We added support for Ada using Libadalang

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/
https://github.com/facebook/infer

Libadalang

- Parser for the Ada language
+ Libadalang's AST is very close to Ada’s syntax
- Set of semantic queries:

« Name resolution (with function overloading)
« Getting the type of an expression
- Many more

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Libadalang to SIL

SIL is very low level:

e Load
e Store
e Call

Translation hard to maintain

Hard to make quick improvements and implement new features

First step: translate Libadalang to a disambiguated high level IR

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Libadalang to AdalR

We introduced AdalR which is a high level intermediate language for Ada

Tree free of syntactic ambiguities
- calls / type conversion / dereferences / variable accesses are all explicit

Two passes:
- Libadalang to AdalR
« AdalR to SIL

Still a monolithic style to translate AdalR to SIL

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

AdalR to SIL

* This pass handles too many things at once:

Translation of short circuit operators

Static evaluation to simplify the AST for the analysis
Translation of nested functions to closures
Translation of Ada finalization

etc

« Unrelated tasks that are performed in one pass

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Multiple passes - Unsafe

* A solution would be to use the same AST for all passes

o —

e We can use the same iterators for all our e Don't known by typing at the start of a
passes pass which nodes are really present in the
AST

e Need to deal with impossible cases

e Don't need to redefine a new AST

« But we are interested in having strongly typed passes
« We want to know in each pass which are the possible constructors in the AST

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Multiple passes - Safe

» Define a new AST when needed

i

Strongly typed

The type of the AST is exactly the
constructors that we have to deal with

Need to redefine the iterators for each
new AST

Cannot reuse helper functions
(pretty-printers, evaluators, ...)

Changing one AST type can be a pain to
deal with down the line

Adacore info@adacore.com

@ adacore.com

https://www.adacore.com/

Nanopass

« Many small localised passes that work on some specific transformations

 Currently 26 passes

(env, subps) |> RemoveTasking.apply

| > ExpandBlock.apply |> ExpandWhilelLoop.apply
ExpandExit.apply
ExpandRenames.apply |> ExpandAddressAspect.apply
ControlFlowFree.apply |> SideEffectFree.apply
NameAsLval.apply |> ExpandSlice.apply
LiftStmt.apply |> SimplifyReturn.apply
DiscriminantCheck.apply |> InsertDefaultExpr.apply
AddChecks.apply |> RemoveCase.apply
SimplifyMembership.apply |> RemoveTypePrefix.apply
ExpandMembership.apply |> ExpandLoop.apply
WrapMod.apply |> StaticEval.apply
ArrayAllocLength.apply |> EdgeScope.apply
ControlledTypes.apply |> ComputeUplevels.apply

Adacore info@adacore.com @ adacore.com 9

https://www.adacore.com/

Nanopass

Based on the Nanopass framework for Racket

Almost each pass refines the type of the AST

The safe approach but without the downsides

How to deal with the added boilerplate
+ define a new AST based on the previous one
- easily write the recursive traverse

How can we reuse the functionalities written for a previous AST

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Normal recursive data type

* Recursive data type

type binop = Plus | Minus | Mult
type expr =
| var of string
| Binop of binop * expr * expr
| IntLit of int

- Manual recursion

let rec eval = function
| IntLit i -> Some i
| Binop (op, 1, r) -> (
match (eval 1, eval r) with
| Some int_1, Some int_r ->
let op = match op with Plus -> (+) | Minus -> (-) | Mult -> (*) in
Some (op int 1 int r)
| _ -> None)
_ -> None

Adacore info@adacore.com @ adacore.com 11

https://www.adacore.com/

Recursion schemes

* Factor the recursion out of the type

type binop = Plus | Minus | Mult type binop = Plus | Minus | Mult
type expr = type expr =

| var of string | var of string

| Binop of binop * expr * expr | Binop of binop *

| IntLit of int | IntLit of int

* Need to define a fixpoint ((([...] expr) expr) expr)

type fix_expr = fix_expr expr

type fix_expr = fix_expr expr

: The type abbreviation fix_expr is cyclic

Adacore info@adacore.com @ adacore.com 12

https://www.adacore.com/

Using regular ADTs

* Need to wrap the type around a record

type fix_expr = { unfix_expr : fix_expr expr }

* Introduces one additional layer at each constructor
 Pattern patching is affected
- Still hard to reuse helper functions (pretty-printers, evaluators, ...)

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Polymorphic variants

« Use of polymorphic variants

type binop = [“Plus | “Minus | “Mult]

type expr =
“Var of string
"Binop of binop *
“IntLit of int]

type fix_expr = fix_expr expr

+ Auto generated map function using ppx_deriving
(https://github.com/ocaml-ppx/ppx deriving)

let map_expr poly e e =
match e with
| “var s -> “var s
| “Binop (binop, 1, r) ->
“Binop (binop, poly e 1, poly e r)
| “IntLit i -> “IntLit i

Adacore info@adacore.com @ adacore.com 14

https://www.adacore.com/
https://github.com/ocaml-ppx/ppx_deriving#plugins-iter-map-and-fold

Recursion schem

» Generalization of List.fold
- Takes a value for the Null c

es - Fold

ase

- Takes a function for the Cons case

* Instead of using parameters to the function fold, we use the constructors

type binop = [“Plus | “Minus | “Mult] let rec
f (ma

type expr =
“Var of string let eva
"Binop of binop * let f
"IntLit of int] mat

fix_expr = fix_expr expr

in
fold

AdaCore

info@adacor

fold _expr (f : expr ->) (e : fix_expr) :
p_expr (fold_expr f) e)

1l (e : fix_expr) : int option =
(e : expr) : int option =
ch e with

“IntLit i -> Some i

Binop (" Plus, Some 1, Some r) -> Some (1 + r)

Binop ("Minus, Some 1, Some r) -> Some (1 - r)

Binop ("Mult, Some 1, Some r) -> Some (1 * r)
-> None

expr f e

e.com @ adacore.com

15

https://www.adacore.com/

Nanopass - Example

- Transform binary operators to N-ary ones

type ‘e expr_2 = - Need to redefine all the constructors
[“Var of string | “Nop of binop * list | “IntLit of int]

« Manual match on common
type fix_expr_2 = fix_expr_2 expr_2 constructors

let to_expr_2 (e : fix_expr) : fix_expr_2 =
let £ (e : fix_expr_2 expr) : fix_expr_2 =
match e with
| “Binop (opl, “Nop (op2, 1), “Nop (op3, r)) when opl = op2 && op2 = op3 ->
“Nop (opl, 1 @ r)
| “Binop (opl, 1, “Nop (op2, r)) when opl = op2 ->
"Nop (opl, 1 :: r)
| “Binop (op1l, “Nop (op2, 1), r) when opl = op2 ->
"Nop (opl, 1 @[r])
| “Binop (op, 1, r) ->
“Nop (op, [1; r])
| Cvar _ | “IntLit _) as common ->
common
in
fold expr f e

Adacore info@adacore.com @ adacore.com 16

https://www.adacore.com/

Nanopass - PPX

* Derive a new AST from the previous one:
+ add new constructors
- delete existing constructors
+ update existing constructors
 Syntax uses a record with fields called add, del and update

type expr = { del : ["Binop of binop * list]; add : ["Nop of binop * list] } [@@deriving map]

let rec fold_expr f e = £ (map_expr (fold_expr f) e)

- The ppx also creates a new type called expr_common

| #expr_common as common -> common

| Cvar _ | “IntLit _) as common -> common

« We can later change a constructor in one AST without impacting too much the following ASTs

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Nanopass - Skeleton

« Example of the definition of a pass as we are writing them

module ControlledTypes = struct
module Pre = EdgeScope.L

module%language L = struct

include EdgeScope.L

type t = {del: } [@@deriving map]

let fold [...] = [...]
end

let insert_finalization e =

let apply e = Pre.fold insert finalization e
end

Adacore info@adacore.com @ adacore.com 18

https://www.adacore.com/

Recursion Schemes

What if we need to match on more than one level of constructors?

What if the translation we want to perform does not work with a simple fold?

Two other functions will help us for that:
+ Unfold
- Refold
We use unfold to translate from top to bottom

We use refold when we need to translate both top down and bottom up

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Recursion Schemes - Unfold

« Translation of the Ada Exit statement

module%language L1 = struct let enrich data x = (data, x)
type stmt = ["Exit | “Loop of | “Label of Label.t | ~Goto of Label.t]
let expand exit (stmts : L1.fix _stmts) : L2.fix_stmts =
and stmts stmt list [@@deriving map] let £ ((current_loop, stmts) : Label.t option * L1.fix_stmts)
(Label.t option * L1.fix_stmts) L2.stmts =
type fix_stmts = fix_stmts stmts let aux s =
end match s with
| “Loop s ->
module%language L2 = struct let loop_label = Label.mk_fresh () in
include L1 ["Loop (Some loop label, s); "Label loop_label]
| “Exit ->
type stmt = { del : ["Exit] } ["Goto (Option.get current loop)]
| #L2.stmt_common as common ->
and stmts stmt list [@@deriving map] [L2.map_stmt (enrich current_loop) common]
in
type fix_stmts = fix_stmts stmts List.concat map aux stmts
in
let rec unfold_stmts (f : -> stmts) (e : : fix_stmts = L2.unfold_stmts £ (None, stmts)
map_stmts (unfold stmts f) (f e)
end

Adacore info@adacore.com @ adacore.com 20

https://www.adacore.com/

Nanopass - Refold

Very useful when a pass generates statements from an expression

On the way down the function generates statements attached to each expression
On the way up, another function concatenates the statements attached to the expression
We will see later that this can also be useful for composing passes

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Nanopass - Reusing functions

« We wrote an evaluator for a specific language
- Now we want to reuse the evaluator with a language that has different constructors

+ Simply need to write the missing cases
module%language L1 = struct
include L@

module%language LO = struct . .
] type unop = [“Plus | “Minus]
2 e = [PIs || SGHAS || CRE] type expr = { add : [“Unop of unop *] } [@@deriving map]
type expr = ["Binop of binop * w 1 P P P g Map
let rec fold_expr f_e e = f_e (map_expr (fold_expr f_e) e
let f_eval = function —8Xpr T e (map_expr _expr £_¢e) €)
"IntLit i -> Some i
| . . let f eval = function
| “Binop ("Plus, Some 1, Some r) -> Some (1 + r)
.. .. | “Unop ("Plus, Some i) -> Some i
| “Binop ("Minus, Some 1, Some r) -> Some (1 - r))
N . | “Unop ("Minus, Some i) -> Some (-i)
| “Binop ("Mult, Some 1, Some r) -> Some (1 * r) .
| “Unop _ -> None
| _ -> None
| #L@.expr as expr -> Lo@.f_eval expr

end
let eval e : int option = fold expr f eval e

end

22

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Entering directory

File "src/ada/lal2adair/passes.nl”, line 136, characters

| ~stnts: (concat_map apply_stmt) s
Error: This expression has type
([< “Assign of
typed *
(o list eval_result *
([> “Name of
[> “FunctionCall of

[< “Builtin of [< Lfinal_type.builtin]

| “Cfun of funinfo

| “Dfun of dispatchinfo

| “Pun of £ 1%

| “QualExpr of
typ *

('a list eval_result * [>

typed as

| “Recordaggregate of ‘¢ record_aggregate]

typed as ‘<)
AssignAddr of ‘b typed *
“Case of ('h, 'c, 'i) case

EnterScope of (‘b typed, 'c) variable typed
ExitScope of (‘b typed, 'c) variable typed

Goto of Labels.t
“Handledstnts of 'i handled_stnts
If of if kind * 'c * i *

|

|

|

|

|

|

|

| “Initialize of 'b typ}
| “Label of Labels.t
|

|

|

|

|

|

|

|

wowes | The first variant type does not allow tag(s) “Allocator,

Metadata of Lfinal_t
Pragna of (' typed,)
Procedurecall of ' brsmEprOEFE

*Raise of record_name * 'c option

ReRaise
Return of "¢ option
Translated
([> "Assign of 'b typed *

| “AssignAddr of ‘b typed *
Call of 'b typed option *
Case of ('h, 'c, 'i) case
“Enterscope of (' typed,
Exitscope of (‘b typed,

Goto of Labels.t
“If of if kind *
Label of Labels.t

Loop o
Labels.t * ('h, 'b typed,

Metadata of Lfinal_type.netadata
pragna of (‘b typed, <) pragna_kind

Raise of record_name *

Return of 'c option]
)

I
I
|
| “ReRaise
I
loc]
as 'a)
List loc list
expression was expected of type
(([> “Allocator of [> "Var of ('m,
call of

[> "Var of (g, 'r) variable] typed option *

L. subprogran_name *

(([> "Var of (‘u, 'v) variable] typed,

eval_result *
([< Allocator of
type_data *
(a1 ¥

/home/mercier/workspace/infer/infer"

Handledstnts of 'i handled_stmts

Initialize of b typed * bool *

[«

AttributeRef of

First of
([« "AccessOffun of
([< “Access
| “Address
Unchecked_Access

| “Unrestricted Access]

as 1) *
funinfo
AccessofLval of
Deref of
“Field of 'd1 * fieldinfo
FunctionCall of
[« “Cfun of funinfo

| "Dfun of dispatchinfo

| “Pfun of 1+
('d1, “2) param list
Index of 'd1 * 'z list

QualExpr of ‘gl type_data *

*Slice of

([« “DiscreteType of

(discrete_type_desc *
[> “Dynanic of record_nane
| “static of const * const

1 option)
type_data

| “Doubledot of

RangeAttr of

typed as 'd1)
attribute_prefix * int

Last of 'd1 attribute_prefix * int
Length of 'd1 attribute prefix * int
“Pos of

(discrete_type_desc *
[> “Dynanic of record_nane

| “Static of const * const]
option) *

Pred of
(discrete_type_desc *
[> “Dynamic of record_name
| “static of const * const]
option) *

“Result of funinfo

Size of ‘d1 attribute_prefix
Succ of
(discrete_type_desc *
[> “Dynamic of record_name
| “static of const * const]
option) *

“val of
(discrete_type_desc *
[> “Dynanic of record_nane
| “Static of const * const]
option) *

1

Binop of

And
*AndThen
Concat

Nanopass - Pitfalls

(01, 'z, '2) case_stmt_alternative list *
loc option
| “Const of const
| “Ifexpr of 'z *
Menbership of

“Call...

| “NamedArrayAggregate of
4 (11, "2) naned) array_aggregate
| “PositionalarrayAggregate of
('z, '2) array_aggregate
| “Quantified of
quantifier *
('h1, "d1, ‘n1) iterator_specification *
| “RaiseExpr of record_name * 'z option
| "RecordAggregate of record_aggregate
| “Unop of [< “Abs | “Minus | “Not | "Plus] *
1as 'b1)
typed as
option &
type_data *
Cp1 ®
(I "Allocator of 'r1 type_data * ‘ot option
| “Attributeref of
[< “First of
(([< “AccessOfFun o
([« “Access
| “Address
| “Unchecked_Access
| “Unrestricted_Access]
as 'u1) *
funinfo
AccessofLval of
Deref of
Field of 's1 * fieldinfo
FunctionCall of
[< “Cfun of funinfo
| “Dfun of dispatchinfo
| “Pfun of <1 *
('s1, "o1) param list
Index of "s1 * ‘o1 list
QualExpr of 'vi type_data *
Slice of

(L< “DiscreteType of
(discrete_type_desc *
[> “Dynamic of record_nane
| “static of const * const
1 option)
type_data
| “Doublebot of
| Rangeattr of
attribute_prefix * int]
as)
| “Typeconversion of
type_data *
| “var of ('y1,) variable]
as 't1)
typed as <)
attribute_prefix * int
| “Last of ‘<1 attribute_prefix * int
| “Length of <1 attribute_prefix * int
| “pos of
(discrete_type_desc *
[> “Dynamic of record_nane
| “static of const * const]
option) *
| “Pred of
(discrete_type_desc *
[> “Dynamic of record_nane
| “static of const * const]
option) *

| “static of const * const]
option) *

| “val of
(discrete_type_desc *
[> “Dynanic of record_nane
| “static of const * const]
option) *
1
Binop of
[« “And
AndThen

CaseExpr

C,) case_stmt_alternative list *
loc option
Const of const
TfExpr of ‘o1 *
“Menbership of

* membership_kind *
[< “Expr of
| “Range of
| “TaggedType of type_data]
List
| “Name of
| “NamedarrayAggregate of
, "01) naned) array_aggregate
| “PositionalArrayAggregate of
(‘o1, ‘o1) array_aggregate
| “Quantified of
quantifier *
(“wi, ‘51, 'b2) iterator_specification *
| “RaiseExpr of record_name * ‘o1 option
RecordAggregate of o1 record_aggregate
| “Unop of [< “Abs | “Minus | “Not | "Plus] *

1as

typed as
option &

AttributeRef of

[«
|
|
|

First of 'd1 attribute_prefix * int
Last of ‘a1 attribute_prefix * int
Length of ‘41 attribute prefix *
Pos of

(discrete_type_desc *

int

[> “Dynanic of record_nane
| “static of const * const]
option) +

Result of funinfo
size attribute_prefix
Suce of
(discrete_type_desc
[> “Dynanic of record_nane
| “static of const * const]

option) *

val of
(discrete_type_desc *
[> “Dynanic of record_nane
| “static of const * const]
option) *
1a
First of ‘<1 attribute_prefix * int
Last attribute_prefix * int
Length of 's1 attribute_prefix * int
Pos of
(discrete_type_desc *
[> “Dynanic of record_name
| “static of const * const]
option) *

Pred
(discrete_type_desc *
[> “Dynanic o record_nane
| “static of const * const]
option) *

The first variant type does not allow tag(s) “Allocator, “Call

I
I
| “piv
I
I

([< "Allocator of type_data * 'z option 6t * I

N info@adacore.com adacore.com 23

AdaCore

https://www.adacore.com/

Nanopass - Pitfalls

» Trying to understand the typing error can be difficult

let to _expr 2 e = binop = [“Plus | “Minus | “Mult]
let f e = expr = [“Var of string | “Binop of binop * | “IntLit of int]
match e with fix_expr = fix_expr expr
| “Binop (opl, “Binop (op2, 1), “Binop (op3, r))
when opl = op2 && op2 = op3 ->
“Nop (opl, 1 @ r)
| “Binop (opl, 1, “Binop (op2, r)) when opl = op2 -> fix_expr_2 = fix_expr_2 expr_2
"Nop (opl, 1 :: r)
| “Binop (opl, “Binop (op2, 1), r) when opl = op2 ->
"Nop (op1l, 1 @[r 1)
| “Binop (op, 1, r) -> fix_expr ->
“"Nop (op, [1; r]) ([> “Binop of binop * list
| (Cvar _ | “IntLit _) as common -> | “IntLit of int
| “Nop of binop * list
| “var of string]
as)

expr 2 = [“Var of string | “Nop of binop * list | “IntLit of int]

common
in
fold expr f e

Adacore info@adacore.com @ adacore.com 24

https://www.adacore.com/

Nanopass - Pitfalls

- Adding type annotations to the pass makes it clear that it is not what we expected

let to_expr 2 (e : fix_expr) : fix_expr 2 = binop = [“Plus | “Minus | “Mult]
let f e = expr = [“Var of string | “Binop of binop * | “IntLit of int]
match e with fix_expr = fix_expr expr
| “Binop (opl, “Binop (op2, 1), “Binop (op3, r))
when opl = op2 && op2 = op3 -> expr 2 = [“Var of string | “Nop of binop * list | “IntLit of int]
“Nop (opl, 1 @ r)
| “Binop (opl, 1, “Binop (op2, r)) when opl = op2 -> fix_expr_2 = fix_expr_2 expr_2
"Nop (opl, 1 :: r)
| “Binop (opl, “Binop (op2, 1), r) when opl = op2 ->
"Nop (op1l, 1 @[r 1) fold_expr f e
| “Binop (op, 1, r) -> ANANAAAAAAAAN
"Nop (op, [1; r]) : This expression has type
| Cvar _ | “IntLit _) as common -> [> “Binop of binop * list
common | “IntLit of int
in | “Nop of binop * list
fold_expr f e | “var of string] as
but an expression was expected of type fix_expr 2
The second variant type does not allow tag(s) “Binop

Adacore info@adacore.com @ adacore.com 2L

https://www.adacore.com/

Nanopass - Pitfalls

- Adding the type annotation to the nested function clearly shows where is the error

let to _expr 2 (e : fix_expr) : fix_expr 2 binop = [“Plus | “Minus | “Mult]
let £ (e : fix_expr_2 expr) : fix_expr_2 = expr = [“Var of string | “Binop of binop * | “IntLit of int]
match e with fix_expr = fix_expr expr
| “Binop (opl, “Binop (op2, 1), “Binop (op3, r))
when opl = op2 && op2 = op3 -> expr_2 = [“Var of string | “Nop of binop * list | “IntLit of int]
“Nop (opl, 1 @ r)
| “Binop (opl, 1, “Binop (op2, r)) when opl = op2 -> fix_expr_2 = fix_expr_2 expr_2
"Nop (opl, 1 :: r)
| “Binop (opl, “Binop (op2, 1), r) when opl = op2 ->
"Nop (op1l, 1 @[r 1)
| “Binop (op, 1, r) ->
“Nop (op, [1; r 1) | “Binop (opl, “Binop (op2, 1), “Binop (op3, r))
| (Cvar _ | “IntLit _) as common -> AANNNANNNNNNNNN
common : This pattern matches values of type [? "Binop of]
in but a pattern was expected which matches values of type fix_expr 2
fold expr f e The second variant type does not allow tag(s) “Binop

Adacore info@adacore.com @ adacore.com 26

https://www.adacore.com/

Nanopass - Performances

Each pass is traversing the whole tree and is recreating a new tree

The solution is to compose passes

Very similar to the deforestation optimization

Almost all our passes are linear in the size of the tree

Libadalang is doing the heavy part of the job (name resolution, typing, ...), which is not
linear.

Nanopasses are taking about 10% of the time spent in the translation

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Nanopass - Composition

« Combine two passes into one
« One pass translates unary operators to binary ones

+ Second pass inlines the static evaluation of the expression

binop = ["Plus | “Minus | “Mult]
unop = [“Plus | “Minus] let translate unop : fix_expr 2 expr -> fix expr_2 = function
| “Unop ("Minus, e) -> “Binop ("Minus, “IntLit 0, e)
expr = | “Unop (CPlus, e) | (CVvar _ | “IntLit _ | “Binop _) as e) -> e
“Var of string
"Binop of binop * let static eval : fix _expr 2 expr 2 -> fix _expr 2 = function
“Unop of unop * | “Binop ("Plus, “IntLit 1, “IntLit r) -> “IntLit (1 + r)
“IntLit of int] [@@deriving map] | “Binop ("Minus, “IntLit 1, “IntLit r) -> “IntLit (1 - r)
| “Binop ("Mult, “IntLit 1, “IntLit r) -> “IntLit (1 * r)
fix_expr = fix_expr expr | CBinop _ | “var _ | “IntLit) as e -> e

type expr_2 =
[“Var of string | “Binop of binop * | “IntLit of int]
[@@deriving map]

type fix expr 2 = fix_expr_2 expr_2

Adacore info@adacore.com @ adacore.com 28

https://www.adacore.com/

Nanopass - Composition

« Combine two passes into one
« One pass translates unary operators to binary ones
+ Second pass inlines the static evaluation of the expression

binop = ["Plus | “Minus | “Mult]
unop = [“Plus | “Minus]

expr =
“Var of string
"Binop of binop *
“Unop of unop *
"IntLit of int] [@@deriving map]

fix_expr = fix_expr expr
type expr_2 =
[“Var of string | “Binop of binop *

[@@deriving map]

type fix expr 2 = fix_expr_2 expr_2

AdaCore

| “IntLit of int]

info@adacore.com

let translate unop : fix_expr 2 expr -> fix expr_2 = function
| “Unop ("Minus, e) -> “Binop ("Minus, “IntLit 0, e)
| “Unop (CPlus, e) | (CVvar _ | “IntLit _ | “Binop _) as e) -> e

let static eval : fix _expr 2 expr 2 -> fix _expr 2 = function
| “Binop ("Plus, “IntLit 1, “IntLit r) -> “IntLit (1 + r)
| “Binop ("Minus, “IntLit 1, “IntLit r) -> “IntLit (1 - r)
| “Binop ("Mult, “IntLit 1, “IntLit r) -> “IntLit (1 * r)
| CBinop _ | “var _ | “IntLit) as e -> e

let not composed (e : fix_expr) : fix expr 2 =
fold_expr translate unop e |> fold expr 2 static_eval

@ adacore.com

29

https://www.adacore.com/

Nanopass - Composition

« Combine two passes into one

- One pass translates unary operators to binary ones

+ Second pass inlines the static evaluation of the expression

binop = ["Plus | “Minus | “Mult]
unop = [“Plus | “Minus]

expr =
“Var of string
"Binop of binop *
“Unop of unop *
"IntLit of int] [@@deriving map]

fix_expr = fix_expr expr
type expr_2 =
[“Var of string | “Binop of binop *

[@@deriving map]

type fix expr 2 = fix_expr_2 expr_2

AdaCore

| “IntLit of int]

info@adacore.com

let translate unop

: fix_expr_ 2 expr -> fix _expr 2 = function

| “Unop ("Minus, e) -> “Binop ("Minus, “IntLit 0, e)

| “Unop ("Plus, e) | ((Vvar _

let static _eval :
| “Binop ("Plus, “IntLit 1,

"Binop ("Minus, " IntLit 1,

|
| “Binop ("Mult, " IntLit 1,
| CBinop _ | “Var _

let not composed (e

: fix_expr)

| “IntLit _ | "Binop) as e) -> e

fix_expr 2 expr_2 -> fix _expr 2 = function

“IntLit r) -> “IntLit (1 + r)
“IntLit r) -> “IntLit (1 - r)
“IntLit r) -> “IntLit (1 * r)

| “IntLit) as e -> e

: fix_expr 2 =

fold_expr translate unop e |> fold expr 2 static_eval

let composed (e : fix_expr)

: fix_expr_2 =

fold _expr (fun x -> static eval (translate unop x)) e

@ adacore.com

30

https://www.adacore.com/

Nanopass - Composition

- Not always easy to combine passes
+ fold followed by an unfold should be swapped (if possible) to use a refold
« A pass with a fold can sometimes be written with unfold to be composed
* Not possible without changing the pass in some cases
+ We did not try to compose too many passes
« but this is definitely possible

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Nanopass - Summary

We can write passes in isolation without too much boilerplate

We are able to reuse helper functions written for one language for other languages
Each pass is strongly typed and impossible cases are avoided by typing
Recursive traverse is easily redefined for each new AST using recursion schemes

Not too much PPX magic, we are mostly using existing OCaml features

The function encoding the pass does not contain recursive calls
- Makes the code more readable

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Future improvements

Generate the fixed version of the types

Generate the different iterators
- Need to write the entry point of the AST to define the higher level iterators

Generate the types for the passes
- Not always easy to write as polymorphic variant should not be closed

Combine passes

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

References

- Original Nanopass framework: https://nanopass.org/

« Matryoshka (Recursion scheme written in scala): https://github.com/precog/matryoshka
- https://github.com/precog/matryoshka#external-resources

- Efficient Nanopass compilers in Scala:
https://github.com/sellout/recursion-scheme-talk/blob/master/nanopass-compiler-talk.org

- Different approach to the Nanopass framework in OCaml:
https://github.com/nanocaml/nanocaml

« Examples for some morphisms in Scala: https://free.cofree.io/2017/11/13/recursion/

- Initial discussions on code reuse: http://www.yakobowski.org/research.html#variants-jfla

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/
https://nanopass.org/
https://github.com/precog/matryoshka
https://github.com/precog/matryoshka#external-resources
https://github.com/sellout/recursion-scheme-talk/blob/master/nanopass-compiler-talk.org
https://github.com/nanocaml/nanocaml
https://free.cofree.io/2017/11/13/recursion/
http://www.yakobowski.org/research.html#variants-jfla

Details - Morphisms

« There are multiple possible folds, unfolds and refolds
 Simplest form are
« catamorphism (what we called fold until now)
« anamorphism (unfold)
* hylomorphism (refold)
 But there are many other forms

« For example, to reuse our eval function to write static_eval we could have used
zygomorphism

« One very useful morphism is paramorphism which allows us to match on the whole
original tree while translating bottom-up.

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Details - Morphisms

Recursion Schemes

folds (tear down a structure) unfolds (build up a structure)
algebrafa — Fixf— a T coalgebrafa — a = Fix f
catamorphism anamorphism
MU a~fa generalized
prepromorphlsm postpromorphlsm (Mmf~im) = (a=f(mpB)
... after applying a NatTrans ... before applying a NatTrans
generalized (Pacre)=e) (et {la))
(W wh) - (f (W a) = B) paramorphism apomorphism
... with primitive recursion ... returning a branch or single level
f(Fixfxa) = a a—f(Fixfva)
zygomorphism* g apomorphism
... with a helper function
(fb—=b)— (f(bxa) = a) (b—=fb)—>(@a—f(bva))
I i histomorphism futumorphism i
%hhjﬁtf&m(?(\r”pa?fr:; Wl answe?s it 155 GG .. TS |eve?s T8 i (hgf i":thl)’TgrEr::irg) https://qithub.com/precog/matryoshka/blob/master/resources/recursion-schemes.pdf
f(wa)—a a—f(ma)

refolds (build up then tear down a structure)
algebrag b — (f ~g) =+ coalgebrafa— a— b

hylomorphism

others cataj ana | d
~ dynamorphism codynamorphism gelekelze
synchromorphlsm y histo: anpa y cata: futup apply the generalizations for both
r - the relevant fold and unfold
222 chronomorphism
h, histo; futu
exomorphism Elgot algebra coElgot algebra
.. may short-circuit while building ... may short-circuit while tearing
277
cata;ja—=bvfa axgb — b;ana
mutumorphism reunfolds (tear down then build up a structure)
P coalgebra g b — (a = b) = algebra fa = Fixf = Fix g
222 metamorphism generalized
ana;|cata apply ... both ... [un]fold
combinations (combine two structures)
algebrafa = Fixf = Fixf = a
Zippamorphism
Stolen from Edward Kmett's http://comonad.com/reader/ fa—a
2009/recursion-schemes/ i i i i « i i
crerrecursio !) mergamorph|sm These can be combined in various ways. For example, a “zygohistomorphic
This gives rise to a family of related recursion schemes, P .) .

modeled in recursion-schemes with distributive law ... which may fail to combine prepromorphlsm combines the zygo, histo, and prepro aspects into a
combinators (f(Fixfy < f (Fixf)) vifa—a signature like (fb = b) = (f~1f) = (f(w(bx a)) > a) = Fixf— a

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/
https://github.com/precog/matryoshka/blob/master/resources/recursion-schemes.pdf

Thank you

Daniel Mercier & Boris Yakobowski

mercier@adacore.com
yakobowski@adacore.com

Adacore info@adacore.com @ adacore.com &

https://github.com/AdaCore
https://www.linkedin.com/company/adacore/
https://www.adacore.com/rss
https://twitter.com/AdaCoreCompany
https://www.youtube.com/user/AdaCore05
https://www.adacore.com/

Nanopass - Pitfalls

We use a global environment for the translation
- default initialization for types, body of type predicates, etc

A pass should also be applied to the syntactic nodes present in the environment

In the end the environment was translated too many times
- Same global environment for each compilation unit
« The passes are applied to the pair global environment x compilation unit

How should passes that use the environment be written?

- Use unfold for those passes

Adacore info@adacore.com @ adacore.com

https://www.adacore.com/

Nanopasses - Mutually recursive types

type binop = [“Plus | “Minus | “Mult]
type expr_node =

“FunctionCall of string * list

"Binop of binop * >

“Var of string]
and ('e,) stmt = [“Call of string * list | “If of
and ('e,) expr & expr_node
and ('e,) stmts = (e,) stmt list [@@deriving map]
type fix_expr = (fix_expr, fix_stmts) expr

and fix_stmts = (fix_expr, fix_stmts) stmts

let fold (f expr : ('e,) expr ->) (f stmts : ('e,
(s : fix _stmts) : =

) stmts ->

let rec fold _expr e = f_expr (map_expr fold _expr fold stmts e)
and fold stmts s = f_stmts (map_stmts fold expr fold stmts s) in

fold stmts s

Adacore info@adacore.com

We always use it in practice

Very similar to the non mutually recursive
case

Not all syntactic categories need to be
mutually recursive

Some passes only visit one syntactic category

Optimized iterators may stop the recursion
early

@ adacore.com 39

https://www.adacore.com/

