
From game semantics to

automated verification of OCaml programs

Guilhem Jaber
Univ. Nantes, Équipe Inria Gallinette

Séminaire Cambium - Inria Paris

1 / 42

How to automatically check safety properties
for an higher-order programming language

with a polymorphic type system,
control operators,

and mutable dynamically-allocated resources?

2 / 42

Interactive semantics of programming languages

50 years of history:

Bohm trees;

Sequential algorithms (Berry & Curien);

Game semantics (Abramsky, Jagadeesan & Malacaria; Hyland & Ong;
Nickau).

Main successes:

Fully-abstract semantics:
I untyped CBN λ-calculus (Bohm trees, Levy-Longo trees)
I PCF+exceptions (sequential algorithms)
I Idealized Algol, RefML, ... (game semantics).

Decidability results
I model-checking µ-calculus formulas over higher-order recursion schemes
I contextual equivalence for Idealized Algol and GroundML for programs

of low-order type.

3 / 42

Introducing interactive semantics

Interactions between the program and its environment is represented
as plays (a.k.a. traces)

 sequences of moves (a.k.a. actions) alternating between Proponent and
Opponent.

Proponent represents the program behavior

 it is determined by the computation of the program.

Opponent represents environment behavior

 it is specified by rules of the game
 built from the programming languages features: type system, (absence

of) side-effects.

Denotation of a program is formed by a strategy

 the set of traces the program generates against any environment that
behave according to the rules of the game.

4 / 42

In this talk:
operationally-presented game semantics

Labelled Transition Systems (LTS) as the basic blocs
I for computing the interaction
I for representing the rules of the game.

Proponent’s behavior is computed via an operational semantics
I rather than compositionally by induction over the typing derivation.

Causality between moves is represented via a nominal encoding.

James Laird. “A Fully Abstract Trace Semantics for General References”.
In: Proceedings of the 34th International Conference on Automata,

Languages and Programming. 2007

5 / 42

Definition

An LTS L is a triple (States,Actions,−→) with

States a set of states
I called configurations when they are built over terms;

A set of actions Actions
I visible actions are called moves m;
I a silent action op, corresponding to internal computations.

a labeled transition relation −→⊆ States×Actions× States
I we write C a−→ D for (C, a,D) ∈−→.

6 / 42

Traces

Traces are finite sequences of moves p1o2 · pkok
that alternates between:

I Player moves p representing the program behavior
I Opponent moves o representing the environment behavior.

Moves m are either call or return operations:

P-question P-answer O-question O-answer

f (A) ret(A) f (A) ret(A)

Input (Opponent) / Output (Proponent) polarities of moves

Duality operator switching polarities: m̄;

Moves exchanges abstract values A,B;
I defined from a characterization of the observational power of the

programming language.

7 / 42

How to define the observational power of a programming
language ?

Via polarization:

interact with negative () values;

observe positive (⊕) values, called patterns.

In this talk: a typed call-by-value λ-calculus with
pattern-matching.

Negative () Positive (⊕)

→ unit, int,×,+

8 / 42

Typing abstract values

Abstract values A,B are nominal ultimate patterns:

Unit Integer Function names Sum Pairs

() k f inji (A) 〈A,B〉

Typing judgment ∆ A : τ
I with ∆ a linear context of names.
I and no names with positive types in ∆.

∅ () : unit

k ∈ Z
∅ k : int

τ function type

f : τ f : τ

∆ A : τi

∆ inji (A) : τ1 + τ2

∆1 A1 : τ1 ∆2 A2 : τ2

∆1 ·∆2 〈A1;A2〉 : τ1 × τ2

9 / 42

Abstract values via Focusing

Any value V can be decomposed into a nominal ultimate pattern A
and an environment γ such that A{γ} = V .

I Corresponds to large-step focusing: Noam Zeilberger. “Focusing and
Higher-Order Abstract Syntax”. In: Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 2008

This decomposition V ↗(A, γ) is defined by the following rules:

()↗((), ε) k↗(k, ε)

λx .M↗(f ; [f 7→ λx .M]) f ↗(g ; [g 7→ f])

V ↗(A, γ) W ↗(B, γ′)

〈V ,W 〉↗(〈A,B〉, γ · γ′)
V ↗(A, γ)

inji (V)↗(inji (A), γ)

10 / 42

Justification pointer

A move binds the function names introduced in the abstract value A
it exchanges.

Taking t = t1 f (A) t2, the question f (A) is justified in t by the move
of t1 that introduces f .

Taking t = t1 ret(A) t2, the answer ret(A) is justified in t by the last
unanswered question of t1.

 a question of t is unanswered when it does not justifies an answer in t.

Example:

ret(〈3, f 〉) f (g) g() f (g ′) ret(5) ret(9) ret(12)

11 / 42

CPS and Well-bracketing
Transform answers into calls to continuation names c

P-question P-answer O-question O-answer

f (A, c) c(A) f (A, c) c(A)

Taking t = t1 c(A) t2, the question c(A) is justified in t by the move
of t1 that introduces c .

CPS translation of traces:

ret(〈3, f 〉) f (g) g() f (g ′) ret(5) ret(9) ret(12)
into

c0(〈3, f 〉) f (g , c1) g(c2) f (g ′, c3) c3(5) c2(9) c1(12)

Reversing the CPS translation?
I only on well-bracketed traces

Definition

A trace is well-bracketed if all its answers are justified by the previously
unanswered question in the trace.

12 / 42

Introducing the OGS LTS

Definition (Synchronization)

Taking L1 = (States1,Actions,−→1) and L2 = (States2,Actions,−→2) two
LTSs sharing the same set of actions, their synchronization L1 ./ L2, is
the LTS (States1 × States2,Actions,−→) with −→ defined as:

I op−→1 J

(I;S)
op−→ (J;S)

S op−→2 T

(I;S)
op−→ (I;T)

I m−→1 J S m−→2 T
(I;S)

m−→ (J;T)

The OGS LTS is built as the parallel composition
LI ./ LTy ./ LWB ./ Ldiscl with:

the Interactive LTS LI that computes Proponent’s interactions using
operational semantics;

the Typing LTS LTy that enforces Opponent’s interactions to be
well-typed

History LTSs LWB and Ldiscl that enforces Opponent’s interactions to
be well-bracketed and non-omniscient.

13 / 42

Interactive LTS
Configurations are either active 〈[c]M; γ〉 or passive 〈γ〉;
with c a continuation name and M a term
γ an environment mapping:

I function names f to values
I continuation names c to named evaluation contexts K = [c ′]E .

op
M 7→op N

〈[c]M; γ〉 op−→ 〈[c]N; γ〉

PQ
V ↗(A; γ′)

〈K [fV]; γ〉 f (A,c)−−−−→ 〈γ · γ′ · [c 7→ K]〉

V ↗(A; γ′)

〈[c]V ; γ〉 c(A)−−−→ 〈γ · γ′〉
PA

OQ

〈γ〉 f (A,c)−−−−→ 〈[c]γ(f)A; γ〉 〈γ〉 c(A)−−−→ 〈γ(c)[A]; γ〉
OA

14 / 42

Typing LTS

Configurations S of LTy keep track of typing of names:
I 〈∆O | ⊥; ∆P〉 for Player configurations;
I 〈∆O | ∆P〉 for Opponent configurations.

Transition checks typing constraints of patterns exchanged using
I Named evaluations contexts [c]E have types ¬τ , with τ the type of the

hole of E .

I Negation of types:
(τ → σ)⊥ , τ × ¬σ
(¬τ)⊥ , τ

James Laird. “A Curry-style Semantics of Interaction: From Untyped to
Second-Order Lazy λµ-Calculus”. In: International Conference on
Foundations of Software Science and Computation Structures.
FoSSaCS’20

15 / 42

Transitions of the Typing LTS

PQ
∆ 〈A, c〉 : ∆O(f)⊥

〈∆O | ⊥; ∆P〉
f (A,c)−−−−→Ty 〈∆O | ∆P ·∆〉

PA
∆ A : ∆O(c)⊥

〈∆O | ⊥; ∆P〉
c(A)−−−→Ty 〈∆O | ∆P ·∆〉

OQ
∆ 〈A, c〉 : ∆P(f)⊥

〈∆O | ∆P〉
f (A,c)−−−−→Ty 〈∆O ·∆ | ⊥; ∆P〉

OA
∆ A : ∆P(c)⊥

〈∆O | ∆P〉
c(A)−−−→Ty 〈∆O ·∆ | ⊥; ∆P〉

16 / 42

Enforcing well-bracketing

Configurations of LWB are stacks π of continuation names introduced by
Proponent.

PQ

〈π〉 f (A,c)−−−−→ 〈c :: π〉

PA

〈π〉 c(A)−−−→ 〈π〉

OQ

〈π〉 f (A,c)−−−−→ 〈π〉

OA

〈c :: π〉 c(A)−−−→ 〈π〉

17 / 42

Polymorphism

Church style System F:

Γ,X : Type ` M : τ

Γ ` ΛX .M : ∀X .τ
Γ ` M : ∀X .τ

Γ ` Mτ : τ ′{X := τ}

Γ ` M : τ{X := τ ′}
Γ ` 〈τ ′;M〉 : ∃X .τ

Γ ` M : ∃X .τ Γ,X : Type, x : τ ` N : τ ′

Γ ` match M with (X , x)⇒ N : τ ′

18 / 42

Polarization of type variables

We tag type variables:
I X⊕ when Proponent choose the type associated to X ;
I X	 when Opponent choose the type associated to X .

Via a type translation polκρ(·) : Types→ Types, for κ ∈ {⊕,	},
defined as

polκρ(τ → σ) , polκ
l
ρ (τ)→ polκρ(σ)

polκρ(∀X .τ) , ∀X .polκ
ρ·[X 7→κl]

(θ)

polκρ(X) , X ρ(X)

polκρ(∃X .τ) , ∃X .polκρ·[X 7→κ](θ)

with (·)l ,

{
⊕ 7→ 	
	 7→ ⊕

19 / 42

Abstract values for Polymorphism

Types exchanged by the two players are represented by type names
α, β.

I Type generativity to distinguish multiple uses of the same existential
type ∃X .τ .

Values exchanged as type X (i.e. polymorphic values) are represented
by polymorphic names p, q.

I Boxing discipline for polymorphic values.
I Polymorphic names introduced by a Player can be replayed multiple

times by the other player.

Negative () Positive (⊕) P-Positive O-Positive Neutral (�)

→,∀ unit, int,×,+,∃ X⊕ X	 Type

20 / 42

Generating Polymorphic Abstract Values

The decomposition V ↗(A, γ) depends on the type of V :
I We have V ↗(p, [p 7→ V]) when V is of type α⊕.
I Three possible implementations:

1 Define LI|LTy as one basic blocks that uses a typed focusing relation
(V , τ)↗(A, γ)

2 Uses an untyped focusing relation that can perform boxing
non-deterministically, and uses LTy to choose the right focusing
according to the type.

3 Compile System F to a language with explicit boxing.

In abstract values provided by Opponent, one has to replace
Proponent polymorphic names p by their concrete values γ(p)

I reversing the focusing via a reduction relation (A, γ)↘V .

21 / 42

Typing abstract values

Linear/non-linear typing judgment Γ|∆ A : τi with:
I ∆ the linear context for bound names;
I Γ the non-linear context for free names.

τ function type

Γ|f : τ f : τ Γ|p : α⊕ p : α⊕
Γ(p) = α	

Γ|∅ p : α	

Γ|∆ A : τi

Γ|∆ inji (A) : τ1 + τ2

Γ|∆1 A1 : τ1 Γ|∆2 A2 : τ2

Γ|∆1 ·∆2 〈A1;A2〉 : τ1 × τ2

Γ|∆ A : τ{X := α}
Γ|∆, α : Types 〈α;A〉 : ∃X .τ

22 / 42

Transitions of the Typing LTS

PQ
∆O|∆ (A, c) : ∆O(f)⊥

〈∆O | ⊥; ∆P〉
f (A,c)−−−−→Ty 〈∆O | ∆P ·∆〉

PA
∆O|∆ A : ∆O(c)⊥

〈∆O | ⊥; ∆P〉
c(A)−−−→Ty 〈∆O | ∆P ·∆〉

OQ
∆P|∆ (A, c) : ∆P(f)⊥

l

〈∆O | ∆P〉
f (A,c)−−−−→Ty 〈∆O ·∆ | ⊥; ∆P〉

OA
∆P|∆ A : ∆P(c)⊥

l

〈∆O | ∆P〉
c(A)−−−→Ty 〈∆O ·∆ | ⊥; ∆P〉

23 / 42

An example of polymorphic interaction

Interaction at type ∀X .∃Y .(X → Y)× (Y → Y)

between the term V , ΛX .〈X ; 〈λx .x ;λx .x〉〉.
and the context
let z = •unit in match z with〈Y ; 〈w1;w2〉〉 ⇒ w2(w1())

generates the trace

c0(f) · f (α, c1) · c1(β; 〈g1; g2〉) · g1(p, c2) · c2(q) · g2(q, c3) · c3(p)

24 / 42

Adding mutable references

We extend the programming language with
I reference creation refM of type τ ref,
I assignation M := N
I dereferencing !M

Stores S are partial maps from locations ` to values used to keep
track of the values of references

Operational semantics is defined via the following reduction rules:

(E [refV]; S) 7→op (E [`]; S · [` 7→ V])
(E [` := V ; S]) 7→op (E [()]; S[` 7→ V])
(E [!`]; S) 7→op (E [S(`)]; S)

Locations ` are parts of patterns
I to compare physical equality of locations

25 / 42

Interactive LTS in presence of references

op
(M; S) 7→op (N; T)

〈[c]M; S; γ〉 op−→ 〈[c]N; T; γ〉

PQ
V ↗(A; γ′)

〈K [fV]; S; γ〉 f (A,c)−−−−→ 〈S; γ · γ′ · [c 7→ K]〉

V ↗(A; γ′)

〈[c]V ; S; γ〉 c(A)−−−→ 〈S; γ · γ′〉
PA

OQ

〈S; γ〉 f (A,c)−−−−→ 〈[c]γ(f)A; S; γ〉 〈S; γ〉 c(A)−−−→ 〈γ(c)[M]; S; γ〉
OA

For sake of simplicity here:

Only locations ` of type unit ref are allowed to appear in abstract
values A

General case: need move-with-abstract-store (m;R) with R
representing the abstract values stored in the disclosed part of S.

26 / 42

Enforcing non-omniscience

Keep track of the locations that are disclosed by one player to the
other

I escape analysis of locations.

Via an LTS Ldiscl whose configurations are sets D of locations known
by both P and O.

Enforce Opponent’s non-omniscience: O cannot play a Proponent’s
location that has not been disclosed.

fn(m) ⊆ D bn(m) ∩ D = ∅
〈D〉 m−→ 〈D ∪ bn(m)〉

27 / 42

Exceptions and Effect Type System
(j.w.w. with Hamza Jaâfar)

We extend the programming language with:
I exception creation exception e of τ , of type τexn,
I which generates exception values e similar to locations `;
I raise operation of exceptions raiseV , which inhabit any type τ .

both e A and raise (e A) are part of patterns.

Effect type system τ →ε σ with ε a set of exceptions {e1, . . . , ei}
I to restrict Opponent’s behavior wrt the exceptions it can raise.

Generalization to algebraic effects and handlers: WIP.

28 / 42

Composing OGS configurations

Specifying both the behavior of Proponent and Opponent by
programs.

Via a synchronization process defined as a parallel composition plus
hiding of LTSs.

Definition (Parallel composition with hiding)

Taking L1 = (States1,Actions,−→1) and L2 = (States2,Actions,−→2) two
LTSs sharing the same set of actions, their parallel composition with hiding
L1||L2, is the LTS (States1 × States2, {op, sync},−→) with −→ defined as:

I1
op−→1 J1

(I1; I2)
op−→ (J1; I2)

I1
op−→2 J2

(I;S)
op−→ (I1; J2)

I1
m−→1 J1 I2

m̄−→2 J2

(I1; I2)
sync−−→ (J1; J2)

29 / 42

Full-abstraction of trace equivalence

Theorem

OGS Trace equivalence and contextual equivalence of the programming
language coincide.

Soundness relies on a congruence and adequacy result for the parallel
composition with hiding operator.

Full-abstraction relies on a definability result to transform a trace t
into a term that generates this trace;

I mutable references is crucial for this result to hold;
I needs to relax the notion of trace equivalence to complete trace

equivalence: traces where all questions have been answered.

Guilhem Jaber and Nikos Tzevelekos. “Trace Semantics for Polymorphic
References”. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’16

30 / 42

Towards Model-Checking

How to automatically check safety properties
of the OGS LTS?

For example ”The LTS does not reach a configuration of the shape
〈[c0]raise e; S; γ〉 unless e has been raised by Opponent before”.

Difficult to prove automatically because the interactions can be
arbitrary long due to

I recursion for Proponent;
I absence of restriction on the number of time function names can be

called by Opponent.

Can we bound Opponent’s behavior?

31 / 42

Linearizing the OGS LTS

Opponent uses values and contexts provided by Opponent only once,
when provided:

op
M 7→op N

〈[c]M〉 op−→ 〈[c]N〉

PQ
V ↗(A; γ)

〈K [fV]〉 f (A,c)−−−−→ 〈γ · [c 7→ K]〉

V ↗(A; γ)

〈[c]V 〉 c(A)−−−→ 〈γ〉
PA

OQ

〈γ〉 f (A,c)−−−−→ 〈[c]γ(f)A〉 〈γ〉 c(A)−−−→ 〈γ(c)[A]〉
OA

This LTS generates a call-by-value variant of Bohm trees.

32 / 42

Correspondence of bisimilarities

Bisimilarity for this LTS is exactly Lassen’s eager normal-form
bisimilarity.
Søren B. Lassen. “Eager normal form bisimulation”. In: 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’05). 2005

For the pure cbv λ-calculus, OGS bisimilarity and eager normal-form
bisimilarity coincide.
Guilhem Jaber and Davide Sangiorgi. “Games, mobile processes, and
functions”. In: 30th EACSL Annual Conference on Computer Science
Logic (CSL 2022). 2022

33 / 42

In presence of local references,
this linearization is not sound anymore!

op
(M; S) 7→op (N; T)

〈[c]M; S〉 op−→ 〈[c]N; T〉

PQ
V ↗(A; γ)

〈K [fV]; S〉 f (A,c)−−−−→ 〈S; γ · [c 7→ K]〉

V ↗(A; γ)

〈[c]V ; S〉 c(A)−−−→ 〈S; γ〉
PA

OQ

〈S; γ〉 f (A,c)−−−−→ 〈[c]γ(f)A; S〉 〈S; γ〉 c(A)−−−→ 〈γ(c)[A]; S〉
OA

let count = ref 0 (* private *)

let inc () = count := !count+2

let check () = assert (not(odd !count))

One needs to test inc and check on all reachable values stored in count.

34 / 42

Store invariants

Consider formulas specifying sets of stored values, for example

{[count 7→ 2k] | k ∈ N}

op
(M; S) 7→op (N; T)

〈M; S; I〉 op−→ 〈N; T; I〉

PQ
V ↗(A; γ) S ∈ I

〈K [fV]; S; I〉 f (A,c)−−−−→ 〈I; γ · [c 7→ K]〉

V ↗(A; γ) S ∈ I

〈[c]V ; S; I〉 c(A)−−−→ 〈I; γ〉
PA

OQ
S ∈ I

〈I; γ〉 f (A,c)−−−−→ 〈[c]γ(f)A〉; S; I

S ∈ I

〈I; γ〉 c(A)−−−→ 〈γ(c)[A]; S; I〉
OA

35 / 42

Framing store invariants

Introduce a separating conjunction ∗ between invariants

provide a way to add new invariants during the interaction for
freshly-allocated references.

op
(M; S) 7→op (N; T)

〈M; S; I〉 op−→ 〈N; T; I〉

V ↗(A; γ) S ∈ I ∗ J

〈K [fV]; S; I〉 f (A,c)−−−−→ 〈I ∗ J ; γ · [c 7→ K]〉

V ↗(A; γ) S ∈ I ∗ J

〈[c]V ; S; I〉 c(A)−−−→ 〈I ∗ J ; γ〉

OQ
S ∈ I

〈I; γ〉 f (A,c)−−−−→ 〈[c]γ(f)A〉; S; I

S ∈ I

〈I; γ〉 c(A)−−−→ 〈γ(c)[A]; S; I〉
OA

36 / 42

Invariants

Computed via symbolic evaluation (M; I) 7→op (N;J)
I via predicate transformer semantics.

For location disclosure (unit ref): invariants are enough
I WIP with Daniel Hirshckoff and Enguerrand Prebet.

For polymorphic values, we conjecture that invariants are enough too
I if true, this would have important consequences for full-abstraction of

logical relations for System F.

37 / 42

Invariants are not enough for mutable store

let count = ref 0 (* private *)

let awk f = count:= 1; f(); assert (! count =1)

One needs a transition system of invariants

count 7→ 0 count 7→ 1

(Worlds,@) with worlds W ∈Worlds of the shape (s, I) with s an
abstract state and I an invariant.

Allow Opponent to navigate arbitrarily far in this transition system
I using the reflexive-transitive closure v∗.

Derek Dreyer, Georg Neis, and Lars Birkedal. “The impact of higher-order
state and control effects on local relational reasoning”. In: Journal of
Functional Programming 22.4-5 (2012), pp. 477–528

38 / 42

Kripke OGS

op
(M; S) 7→op (N; T)

〈M; S;W〉 op−→ 〈N; T;W〉

PQ
V ↗(A; γ) W @W ′ S ∈ W ′.I

〈K [fV]; S;W〉 f (A,c)−−−−→ 〈W ′; γ · [c 7→ K]〉

PA
V ↗(A; γ) W @W ′ S ∈ W ′.I

〈[c]V ; S;W〉 c(A)−−−→ 〈W; γ〉

OQ
W v∗ W ′ S ∈ W ′.I

〈W; γ〉 f ,c(A)−−−−→ 〈[c]γ(f)A; S;W ′〉

W v∗ W ′ S ∈ W ′.I

〈γ〉 c(A)−−−→ 〈S;W ′; γ(c)[A]〉
OA

39 / 42

Kripke Eager Normal Form Bisimulation

Bisimilarity over this LTS
I using worlds with relational invariants over store
I incorporates the well-bracketed constraints of LWB by distinguishing

OQ and OA evolutions of worlds

Fully-abstract for the a language with higher-order references.

Guilhem Jaber and Andrzej S. Murawski. “Compositional Relational
Reasoning via Operational Game Semantics”. In: Proceedings of the
36th Annual ACM/IEEE Symposium on Logic in Computer Science.
2021

40 / 42

Temporal reasoning
(WIP with Andrzej Murawski)

Abstract away the worlds
I using temporal modalities � and �.

Distinguish OQ and OA evolutions of worlds
I OA transitions of worlds are well-bracketed
I represented using visibly-pushdown modalities.

Interactions inside while-loops represented using greatest fixpoints
formulas of the µ-calculus.

41 / 42

Conclusion

First steps towards automated verifications of effectul polymorphically
typed programs.

I Safety property as a model-checking problem over infinite trees
I with linearized Opponent behavior
I and temporal reasoning over resources.

Future work:
I Other OCaml’s features

F GADTs;
F module system.

I Invariant generation
F via weakest precondition generators;
F abstract interpretation;
F abstract domains for ADTs.

I Reducing the model-checking problem to satisfiability of Constrained
Horn Clauses.

I Implementation!

42 / 42

