From game semantics to
automated verification of OCaml programs

Guilhem Jaber
Univ. Nantes, Equipe Inria Gallinette

Séminaire Cambium - Inria Paris

1/42

How to automatically check safety properties
for an higher-order programming language
with a polymorphic type system,
control operators,
and mutable dynamically-allocated resources?

2/42

Interactive semantics of programming languages

50 years of history:
@ Bohm trees;
@ Sequential algorithms (Berry & Curien);

e Game semantics (Abramsky, Jagadeesan & Malacaria; Hyland & Ong;
Nickau).

Main successes:

@ Fully-abstract semantics:
» untyped CBN M-calculus (Bohm trees, Levy-Longo trees)
» PCF-+exceptions (sequential algorithms)
> ldealized Algol, RefML, ... (game semantics).

@ Decidability results
» model-checking p-calculus formulas over higher-order recursion schemes
» contextual equivalence for Idealized Algol and GroundML for programs

of low-order type.

3/42

Introducing interactive semantics

@ Interactions between the program and its environment is represented
as plays (a.k.a. traces)

~~ sequences of moves (a.k.a. actions) alternating between Proponent and
Opponent.

@ Proponent represents the program behavior
~ it is determined by the computation of the program.

o Opponent represents environment behavior
~ it is specified by rules of the game

~> built from the programming languages features: type system, (absence
of) side-effects.

@ Denotation of a program is formed by a strategy

~- the set of traces the program generates against any environment that
behave according to the rules of the game.

4/42

In this talk:
operationally-presented game semantics

o Labelled Transition Systems (LTS) as the basic blocs

» for computing the interaction
» for representing the rules of the game.

@ Proponent’s behavior is computed via an operational semantics
» rather than compositionally by induction over the typing derivation.

o Causality between moves is represented via a nominal encoding.

James Laird. "A Fully Abstract Trace Semantics for General References”.
In: Proceedings of the 34th International Conference on Automata,
Languages and Programming. 2007

5/42

Definition
An LTS L is a triple (States, Actions, —) with
@ States a set of states
called configurations when they are built over terms;
@ A set of actions Actions
visible actions are called moves m;
a silent action op, corresponding to internal computations.
@ a labeled transition relation —C States x Actions x States
we write C 2 D for (C,a,D) €.

6/42

Traces

e o

Traces are finite sequences of moves p10; - pxOk
that alternates between:

> Player moves p representing the program behavior
» Opponent moves o representing the environment behavior.

Moves m are either call or return operations:

P-question

P-answer

O-question

O-answer

f(A)

Tet(A)

f(A)

ret(A)

Input (Opponent) / Output (Proponent) polarities of moves

Duality operator switching polarities: m;

Moves exchanges abstract values A, B,

> defined from a characterization of the observational power of the

programming language.

7/42

How to define the observational power of a programming
language 7

Via polarization:

@ interact with negative (&) values;

@ observe positive (@) values, called patterns.

In this talk: a typed call-by-value A-calculus with

pattern-matching.

Negative (©)

Positive ()

%

unit,int, X, +

8/42

Typing abstract values

@ Abstract values A, B are nominal ultimate patterns:

Unit | Integer | Function names | Sum Pairs
0 k f inj;(A) | (A B)

@ Typing judgment AIFA: 7T

» with A a linear context of names.
» and no names with positive types in A.

keZ 7 function type

@Ik () : unit @ IF k:int forl-for
A”—AZT,' A1”—A127'1 AQH—AQZTQ
A - inj,-(A) T+ T ANRWAY N I <A1;A2> 1 T1 X T2

9/42

Abstract values via Focusing

@ Any value V can be decomposed into a nominal ultimate pattern A
and an environment v such that A{~} = V.
» Corresponds to large-step focusing: Noam Zeilberger. "Focusing and

Higher-Order Abstract Syntax”. In: Proceedings of the 35th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 2008

@ This decomposition V' (A, ~) is defined by the following rules:

0.7(0,¢) k /(k,e)

Ax.M (£ [F — Ax.M]) f g:lg— f])

V Ay W AB,Y) vV (A7)
(V, W) (A, B),v-7) inj;(V) ~(inj;(A),7)

10/42

Justification pointer

@ A move binds the function names introduced in the abstract value A
it exchanges.

e Taking t = t1 f(A) t2, the question f(A) is justified in t by the move
of t; that introduces f.

o Taking t = t; ret(A) to, the answer ret(A) is justified in t by the last
unanswered question of tj.

~> a question of t is unanswered when it does not justifies an answer in t.

@ Example:

reE((3.£)) F(g) B() (&) TeE(5) ret(9) reE(12)

11/42

CPS and Well-bracketing

@ Transform answers into calls to continuation names ¢

P-question | P-answer | O-question | O-answer

(A, c) c(A) f(A,c) c(A)

e Taking t = t; c(A) ta, the question c(A) is justified in t by the move
of t; that introduces c.
@ CPS translation of traces:
ret((3, 1)) f(g) &() f(g’) ret(5) ret(9) ret(12)
into
a((3,f)) f(g.a1) &(c2) f(g', c3) e3(5) €2(9) cx(12)

@ Reversing the CPS translation?

» only on well-bracketed traces

Definition
A trace is well-bracketed if all its answers are justified by the previously
unanswered question in the trace.

12/42

Introducing the OGS LTS

Definition (Synchronization)

Taking £1 = (States;, Actions, —1) and £, = (Statesy, Actions, —2) two
LTSs sharing the same set of actions, their synchronization £1 <1 L5, is
the LTS (States; x Statesp, Actions, —) with — defined as:

122,37 S X, T 15,7 s&,T
(I;S) =% (I;S) (I;S) =5 (I; T) LS) = (I; T)

The OGS LTS is built as the parallel composition
L) > ETy < Lwe X Lyisel With:
@ the Interactive LTS L, that computes Proponent’s interactions using
operational semantics;

e the Typing LTS Ly, that enforces Opponent’s interactions to be
well-typed

@ History LTSs Lwg and Lgisc that enforces Opponent’s interactions to
be well-bracketed and non-omniscient.

13/42

Interactive LTS

e Configurations are either active ([c]M;~) or passive (v);
@ with ¢ a continuation name and M a term
@ < an environment mapping:
» function names f to values
» continuation names ¢ to named evaluation contexts K = [c]E.

M |—>0p N
M) P (el

PQ V/‘() V/‘ A 7/) PA
KIVED 2D (e KD ([dVin) 22 ()
oQ OA
RN o B € V) N O R LN 031 - PR

14 /42

Typing LTS

e Configurations S of L1, keep track of typing of names:
» (Ao | L; Ap) for Player configurations;
» (Ao | Ap) for Opponent configurations.
@ Transition checks typing constraints of patterns exchanged using I+
» Named evaluations contexts [c]E have types =7, with 7 the type of the

hole of E. N
» Negation of types: ET;J_G)

James Laird. “A Curry-style Semantics of Interaction: From Untyped to
Second-Order Lazy A\u-Calculus”. In: International Conference on

Foundations of Software Science and Computation Structures.
FoSSaCS'20

T X 70

(> |l>

T

15/ 42

Transitions of the Typing LTS

Al (A) Ao(f)*

f(A,
(Do | Li8p) "2 (Ao | Bp - A)

PQ

AlFA: Ao(c)t

c(A
(Do | L) “hiry (B0 | Ap - A)

PA

Al (A c): Ap(F)*F

f(A,c
(B0 | Ap) "4 (Ao A | L;Ap)

0oQ

AlFA: Ap(c)t

c(A
(Do | Bp) gy (Ao A | LiAp)

OA

16 /42

Enforcing well-bracketing

Configurations of Lyyg are stacks 7 of continuation names introduced by
Proponent.

17/42

Polymorphism

Church style System F:

X :Type-M: 7 M=M:vX.T
MEAXM VX1 M= Mr:{X =71}

Fr=M:r{X:=7}
C=(r'; M) 3X.1

MrM=M™:3X.r X :Type,x:7HN:7
[+match M with (X,x) = N: 7/

18/42

Polarization of type variables

o We tag type variables:

» X% when Proponent choose the type associated to X;
» X© when Opponent choose the type associated to X.

e Via a type translation polj(-) : Types — Types, for k € {®, 0},

defined as
poI’“‘(T — o) £ poI’"””i() — poI”(U)
poli(VX.T) = VX. pol? [X._mi](ﬁ)
pol“() 2 xp(X)
pol7(3X.7) £ 3X. POlY (xisr) (0)

with (-)} 2 {@ O
S @

19/42

Abstract values for Polymorphism

@ Types exchanged by the two players are represented by type names

a, .

» Type generativity to distinguish multiple uses of the same existential
type 3X.7.

@ Values exchanged as type X (i.e. polymorphic values) are represented
by polymorphic names p, q.

» Boxing discipline for polymorphic values.

» Polymorphic names introduced by a Player can be replayed multiple
times by the other player.

Negative (©)

Positive (®)

P-Positive

O-Positive

Neutral (®)

-,V

unit, int, X, +,d

)(GB

)(69

Type

20/42

Generating Polymorphic Abstract Values

@ The decomposition V' *(A,~) depends on the type of V:

» We have V _*(p,[p — V]) when V is of type a®.
» Three possible implementations:

@ Define L| Lty as one basic blocks that uses a typed focusing relation
(V.7) /(A7)

@ Uses an untyped focusing relation that can perform boxing
non-deterministically, and uses L1, to choose the right focusing
according to the type.

© Compile System F to a language with explicit boxing.

@ In abstract values provided by Opponent, one has to replace
Proponent polymorphic names p by their concrete values ~(p)

> reversing the focusing via a reduction relation (A,)\, V.

21/42

Typing abstract values

@ Linear/non-linear typing judgment I'|A |- A : 7; with:
» A the linear context for bound names;
» [the non-linear context for free names.

T function type M(p) =a®
Cf:rl-f:7 Flp:a®I-p:a® Mel-p:a®
MAIFA: T MNApIFA 7 MNA2 IF Ay :

F|A|F inji(A):Tl+T2 F|A1-A2 I+ <A1;A2> 1T1 X T

[AFA:T{X = a)
MNA, «: Types Ik (a; A) - IX.7

22/42

Transitions of the Typing LTS

Ao|AIF (A, c) - Ao(F)t

PQ —
F(A,
(Bo | Liap) "% (Ao | Ap -)
AolAIFA: Ag(c)*t
oA o o(¢)

c(A
(Do | L;iap) st (Ao | Ap - A)

AplA I (A, c): Ap(f)H
0q Pl (A c): Ap(f)

f(A,
(Do | Bp) "2 (Ao A | L Bp)

Dp|ATFA: Ap(c)t

c(A)

OA (
(Do | Ap) =1y (Do - A [L Ap)

23/42

An example of polymorphic interaction

Interaction at type VX.3Y.(X — Y) x (Y = Y)
between the term V = AX.(X; (Ax.x; Ax.x)).

and the context
let z = eunit in match z with(Y; (wi; wo)) = wa(wi())

generates the trace

a(f) - fla, a) - ca(B: (g1 82)) - &1(p, @2) - @2(q) - 82(9; e3) - 3(p)

24/42

Adding mutable references

@ We extend the programming language with

> reference creation ref M of type 7 ref,
» assignation M .= N
» dereferencing '|M

@ Stores S are partial maps from locations /¢ to values used to keep
track of the values of references

@ Operational semantics is defined via the following reduction rules:

(E[refV];S) +—op (E[;S-[0— V])
(Elt:= Vi8]) wop (E[Q:S[E— V])
(E['4]:8) —op (E[S(O)];8)

@ Locations ¢ are parts of patterns
» to compare physical equality of locations

25 /42

Interactive LTS in presence of references

(M;8) »—>0p (N;T)

P M) = ([N T)

PQ 7V (A V (A9 oA
(KIVESi7) 22 sy o/ [KD ([Visi7) <2 (si7-7)
oQ f(. (A OA

(S;7) ——= ([c|V(F)A;S;) (S;7) —= (v(c)IM]; 8;)

For sake of simplicity here:
@ Only locations ¢ of type unit ref are allowed to appear in abstract
values A
o General case: need move-with-abstract-store (m; R) with R
representing the abstract values stored in the disclosed part of S.

26 /42

Enforcing non-omniscience

@ Keep track of the locations that are disclosed by one player to the
other

> escape analysis of locations.

@ Via an LTS Lygjsc) whose configurations are sets D of locations known
by both P and O.

@ Enforce Opponent's non-omniscience: O cannot play a Proponent’s
location that has not been disclosed.

fn(m) C D bn(m)N D =@
(D) = (D Ubn(m))

27 /42

Exceptions and Effect Type System
(j.w.w. with Hamza Jaafar)

@ We extend the programming language with:

> exception creation exception e of 7, of type Texn,
» which generates exception values e similar to locations /;
> raise operation of exceptions raiseV/, which inhabit any type 7.

@ both e A and raise (e A) are part of patterns.

o Effect type system 7 —. o with € a set of exceptions {e1,...,e;}
> to restrict Opponent’s behavior wrt the exceptions it can raise.

@ Generalization to algebraic effects and handlers: WIP.

28/42

Composing OGS configurations

@ Specifying both the behavior of Proponent and Opponent by
programs.

@ Via a synchronization process defined as a parallel composition plus
hiding of LTSs.

Definition (Parallel composition with hiding)

Taking £1 = (States;, Actions, —1) and £, = (Statesp, Actions, —3) two
LTSs sharing the same set of actions, their parallel composition with hiding
L1||L2, is the LTS (States; x Statesy, {op,sync}, —) with — defined as:

I; 2% Iz I 32 Jo I & 0 I E)z Jo
(I1; 1) = (J1; 1) (I;S) 2 (I1; Io) (I1; 1) 255 (J1; Jo)

29/42

Full-abstraction of trace equivalence

Theorem

OGS Trace equivalence and contextual equivalence of the programming
language coincide.

@ Soundness relies on a congruence and adequacy result for the parallel
composition with hiding operator.

@ Full-abstraction relies on a definability result to transform a trace t
into a term that generates this trace;

» mutable references is crucial for this result to hold;
» needs to relax the notion of trace equivalence to complete trace
equivalence: traces where all questions have been answered.
Guilhem Jaber and Nikos Tzevelekos. “Trace Semantics for Polymorphic

References”. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS '16

30/42

Towards Model-Checking

How to automatically check safety properties
of the OGS LTS?

@ For example "The LTS does not reach a configuration of the shape
([co]raise e;S;7y) unless e has been raised by Opponent before”.

o Difficult to prove automatically because the interactions can be
arbitrary long due to

» recursion for Proponent;
» absence of restriction on the number of time function names can be
called by Opponent.

Can we bound Opponent'’s behavior?

31/42

Linearizing the OGS LTS

@ Opponent uses values and contexts provided by Opponent only once,
when provided:

M —op N
[clM) =5 ([cIN)

Op<

vV A; :
PQ f(Afc)(") v/ (Cf:)ﬂ PA
(K[fV]) —= (v -[e = K]) ([e]V) — ()

oQ OA
o) AL qdvina) s (A

@ This LTS generates a call-by-value variant of Bohm trees.

32/42

Correspondence of bisimilarities

@ Bisimilarity for this LTS is exactly Lassen's eager normal-form
bisimilarity.
Sgren B. Lassen. “Eager normal form bisimulation”. In: 20th Annual
IEEE Symposium on Logic in Computer Science (LICS'05). 2005

@ For the pure cbv A-calculus, OGS bisimilarity and eager normal-form
bisimilarity coincide.
Guilhem Jaber and Davide Sangiorgi. “Games, mobile processes, and
functions”. In: 30th EACSL Annual Conference on Computer Science
Logic (CSL 2022). 2022

33/42

In presence of local references,
this linearization is not sound anymore!
(M;8) »—>op (N;T)

([c]M;8) = ([c]N;T)

op

PQ VA vV /(A) PA

KIVES) L2 sy fe s K ([Vis) 22 (s

oQ OA

59 22 (dvnas) (59 D ()AL)

let count = ref 0 (* private *)
let inc () = count := !count+2
let check () = assert (not(odd !count))

One needs to test inc and check on all reachable values stored in count.

34/42

Store invariants

Consider formulas specifying sets of stored values, for example

{[count — 2k] | k € N}

(M;8) »—>0p (N;T)

®MisT) D (N T T)

0 V ANAy) SeT VA(A) seT
KIVEST) LA Ty e K (dVisiT) 2 (T)
Se’l Sec’l
0Q ao, OA

() AL AT (T S (o)Al s T)

35/42

Framing store invariants

@ Introduce a separating conjunction * between invariants

@ provide a way to add new invariants during the interaction for
freshly-allocated references.

(M;8) »—>op (N;T)

®MsT) B (NTT)

V A(Ay) SeIxg AAy) SeTxT
KIVEST) LAY Ta gy e k) (dVisiT) 28 (T4 719)
0Q ScT Ssc’l oA
() T2, ([(F)AY; s (T:7) s ()14l 5 7)

36/42

Invariants

o Computed via symbolic evaluation (M;Z) 4, (N; J)
> via predicate transformer semantics.

@ For location disclosure (unit ref): invariants are enough
» WIP with Daniel Hirshckoff and Enguerrand Prebet.

@ For polymorphic values, we conjecture that invariants are enough too

» if true, this would have important consequences for full-abstraction of
logical relations for System F.

37/42

Invariants are not enough for mutable store

let count = ref 0 (* private *)
let awk f = count:= 1; f(); assert (!count=1)

One needs a transition system of invariants

e (Worlds, C) with worlds W € Worlds of the shape (s,Z) with s an
abstract state and Z an invariant.
@ Allow Opponent to navigate arbitrarily far in this transition system
» using the reflexive-transitive closure C*.
Derek Dreyer, Georg Neis, and Lars Birkedal. “The impact of higher-order
state and control effects on local relational reasoning”. In: Journal of
Functional Programming 22.4-5 (2012), pp. 477-528

38/42

Kripke OGS

0oQ

(M;8) —op (N;T)
(M;s; W) 25 (N; T; W)

op

V (Ay) WeEeW sew'r

PQ —
K[V s W) L2 oWy [e v K))

A V (Ay) Wew sew'z

(Vi) <2 o)

P

WLC*W seWwW.T wWC*wW sew'T oA

c(A)

Wiy 28 ey pas)) S s Wi()lAD

39/42

Kripke Eager Normal Form Bisimulation

@ Bisimilarity over this LTS

» using worlds with relational invariants over store
> incorporates the well-bracketed constraints of Lyg by distinguishing
0OQ and OA evolutions of worlds

o Fully-abstract for the a language with higher-order references.

Guilhem Jaber and Andrzej S. Murawski. “Compositional Relational
Reasoning via Operational Game Semantics”. In: Proceedings of the
36th Annual ACM/IEEE Symposium on Logic in Computer Science.
2021

40/ 42

Temporal reasoning
(WIP with Andrzej Murawski)

@ Abstract away the worlds

» using temporal modalities ¢ and [J.

@ Distinguish OQ and OA evolutions of worlds

» OA transitions of worlds are well-bracketed
» represented using visibly-pushdown modalities.

@ Interactions inside while-loops represented using greatest fixpoints
formulas of the pu-calculus.

41/42

Conclusion

@ First steps towards automated verifications of effectul polymorphically
typed programs.
» Safety property as a model-checking problem over infinite trees
» with linearized Opponent behavior
» and temporal reasoning over resources.

o Future work:
» Other OCaml's features

* GADTs;
* module system.

» Invariant generation
* via weakest precondition generators;
* abstract interpretation;
* abstract domains for ADTs.
» Reducing the model-checking problem to satisfiability of Constrained
Horn Clauses.
» Implementation!

42/42

