From game semantics to automated verification of OCaml programs

Guilhem Jaber Univ. Nantes, Équipe Inria Gallinette

Séminaire Cambium - Inria Paris

How to automatically check safety properties for an higher-order programming language with a polymorphic type system, control operators, and mutable dynamically-allocated resources?

Interactive semantics of programming languages

50 years of history:

- Bohm trees;
- Sequential algorithms (Berry & Curien);
- Game semantics (Abramsky, Jagadeesan & Malacaria; Hyland & Ong; Nickau).

Main successes:

- Fully-abstract semantics:
 - untyped CBN λ -calculus (Bohm trees, Levy-Longo trees)
 - PCF+exceptions (sequential algorithms)
 - Idealized Algol, RefML, ... (game semantics).
- Decidability results
 - \blacktriangleright model-checking $\mu\text{-calculus}$ formulas over higher-order recursion schemes
 - contextual equivalence for Idealized Algol and GroundML for programs of low-order type.

Introducing interactive semantics

- Interactions between the program and its environment is represented as *plays* (a.k.a. *traces*)
 - sequences of moves (a.k.a. actions) alternating between Proponent and Opponent.
- Proponent represents the program behavior
 - \rightsquigarrow it is determined by the computation of the program.
- Opponent represents environment behavior
 - \rightsquigarrow it is specified by rules of the game
 - built from the programming languages features: type system, (absence of) side-effects.
- Denotation of a program is formed by a *strategy*
 - the set of traces the program generates against any environment that behave according to the rules of the game.

In this talk:

operationally-presented game semantics

- Labelled Transition Systems (LTS) as the basic blocs
 - for computing the interaction
 - for representing the rules of the game.
- Proponent's behavior is computed via an operational semantics
 - rather than compositionally by induction over the typing derivation.
- Causality between moves is represented via a nominal encoding.

James Laird. "A Fully Abstract Trace Semantics for General References". In: Proceedings of the 34th International Conference on Automata, Languages and Programming. 2007

Definition

An LTS \mathcal{L} is a triple (States, Actions, \rightarrow) with

• States a set of states

called configurations when they are built over terms;

• A set of actions Actions

visible actions are called moves m;

a silent action op, corresponding to internal computations.

• a labeled transition relation $\rightarrow \subseteq$ States \times Actions \times States • we write $\mathbb{C} \xrightarrow{a} \mathbb{D}$ for $(\mathbb{C}, a, \mathbb{D}) \in \rightarrow$.

Traces

- Traces are finite sequences of moves p₁o₂ · p_ko_k
- that alternates between:
 - Player moves p representing the program behavior
 - *Opponent* moves o representing the environment behavior.
- Moves m are either *call* or *return* operations:

P-question	P-answer	O-question	O-answer
$\overline{f}(A)$	$\overline{\mathrm{ret}}(A)$	f(A)	ret(A)

- Input (Opponent) / Output (Proponent) polarities of moves
- Duality operator switching polarities: m;
- Moves exchanges *abstract values A*, *B*;
 - defined from a characterization of the observational power of the programming language.

How to define the observational power of a programming language ?

Via **polarization**:

- *interact* with negative (\ominus) values;
- observe positive (\oplus) values, called patterns.
 - In this talk: a typed call-by-value λ -calculus with pattern-matching.

Negative (\ominus)	Positive (\oplus)
\rightarrow	$\texttt{unit}, \texttt{int}, \times, +$

Typing abstract values

• Abstract values A, B are nominal ultimate patterns:

Unit	Integer	Function names	Sum	Pairs
()	k	<u>f</u>	$\operatorname{inj}_i(A)$	$\langle A, B \rangle$

- Typing judgment $\Delta \Vdash A : \tau$
 - with Δ a linear context of names.
 - and no names with positive types in Δ .

$$\frac{k \in \mathbb{Z}}{\varnothing \Vdash (): \text{unit}} \qquad \frac{k \in \mathbb{Z}}{\varnothing \Vdash k: \text{int}} \qquad \frac{\tau \text{ function type}}{f: \tau \Vdash \underline{f}: \tau}$$
$$\frac{\Delta \Vdash A: \tau_i}{\Delta \Vdash \text{inj}_i(A): \tau_1 + \tau_2} \qquad \frac{\Delta_1 \Vdash A_1: \tau_1 \quad \Delta_2 \Vdash A_2: \tau_2}{\Delta_1 \cdot \Delta_2 \Vdash \langle A_1; A_2 \rangle: \tau_1 \times \tau_2}$$

Abstract values via Focusing

- Any value V can be decomposed into a nominal ultimate pattern A and an environment γ such that A{γ} = V.
 - Corresponds to large-step focusing: Noam Zeilberger. "Focusing and Higher-Order Abstract Syntax". In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2008
- This decomposition $V \nearrow (A, \gamma)$ is defined by the following rules:

$$\overline{()\nearrow((),\varepsilon)} \qquad \overline{k\nearrow(k,\varepsilon)}$$

 $\overline{\lambda x.M \nearrow (\underline{f}; [f \mapsto \lambda x.M])} \qquad \overline{f \nearrow (\underline{g}; [g \mapsto f])}$

$$\frac{V \nearrow (A, \gamma) \quad W \nearrow (B, \gamma')}{\langle V, W \rangle \nearrow (\langle A, B \rangle, \gamma \cdot \gamma')} \qquad \frac{V \nearrow (A, \gamma)}{\operatorname{inj}_i(V) \nearrow (\operatorname{inj}_i(A), \gamma)}$$

Justification pointer

- A move *binds* the function names introduced in the abstract value A it exchanges.
- Taking t = t₁ f(A) t₂, the question f(A) is *justified in* t by the move of t₁ that introduces f.
- Taking t = t₁ ret(A) t₂, the answer ret(A) is *justified in* t by the last unanswered question of t₁.

 \rightsquigarrow a question of t is *unanswered* when it does not justifies an answer in t.

• Example:

 $\overline{\operatorname{ret}}(\langle 3, f \rangle) f(g) \overline{g}() f(g') \overline{\operatorname{ret}}(5) \operatorname{ret}(9) \overline{\operatorname{ret}}(12)$

CPS and Well-bracketing

• Transform answers into calls to *continuation names c*

P-question	P-answer	O-question	O-answer
$\overline{f}(A,c)$	$\overline{c}(A)$	f(A, c)	c(A)

- Taking t = t₁ c(A) t₂, the question c(A) is *justified in* t by the move of t₁ that introduces c.
- CPS translation of traces:

$$\overline{\operatorname{ret}}(\langle 3, f \rangle) f(g) \overline{g}() f(g') \overline{\operatorname{ret}}(5) \operatorname{ret}(9) \overline{\operatorname{ret}}(12)$$
into
$$\overline{c_0}(\langle 3, f \rangle) f(g, c_1) \overline{g}(c_2) f(g', c_3) \overline{c_3}(5) c2(9) \overline{c_1}(12)$$

- Reversing the CPS translation?
 - only on well-bracketed traces

Definition

A trace is well-bracketed if all its answers are justified by the previously unanswered question in the trace.

Introducing the OGS LTS

Definition (Synchronization)

Taking $\mathcal{L}_1 = (States_1, Actions, \rightarrow_1)$ and $\mathcal{L}_2 = (States_2, Actions, \rightarrow_2)$ two LTSs sharing the same set of actions, their *synchronization* $\mathcal{L}_1 \bowtie \mathcal{L}_2$, is the LTS (States₁ × States₂, Actions, \rightarrow) with \rightarrow defined as:

$$\frac{\mathbb{I} \xrightarrow{\text{op}} \mathbb{I} \mathbb{J}}{(\mathbb{I}; \mathbb{S}) \xrightarrow{\text{op}} (\mathbb{J}; \mathbb{S})} \qquad \frac{\mathbb{S} \xrightarrow{\text{op}} \mathbb{T}}{(\mathbb{I}; \mathbb{S}) \xrightarrow{\text{op}} (\mathbb{I}; \mathbb{T})} \qquad \frac{\mathbb{I} \xrightarrow{\text{m}} \mathbb{J} \mathbb{J} \qquad \mathbb{S} \xrightarrow{\text{m}} \mathbb{T}}{(\mathbb{I}; \mathbb{S}) \xrightarrow{\text{m}} (\mathbb{J}; \mathbb{T})}$$

The OGS LTS is built as the parallel composition $\mathcal{L}_{I} \ \bowtie \ \mathcal{L}_{Ty} \ \bowtie \ \mathcal{L}_{WB} \ \bowtie \ \mathcal{L}_{discl} \text{ with:}$

- the Interactive LTS L₁ that computes Proponent's interactions using operational semantics;
- \bullet the Typing LTS \mathcal{L}_{Ty} that enforces Opponent's interactions to be well-typed
- History LTSs \mathcal{L}_{WB} and \mathcal{L}_{discl} that enforces Opponent's interactions to be well-bracketed and *non-omniscient*.

Interactive LTS

- Configurations are either active $\langle [c]M; \gamma \rangle$ or passive $\langle \gamma \rangle$;
- with c a continuation name and M a term
- γ an environment mapping:
 - function names f to values
 - continuation names c to named evaluation contexts K = [c']E.

op
$$\frac{M \mapsto_{\mathsf{op}} \mathsf{N}}{\langle [c]M; \gamma \rangle \xrightarrow{\mathsf{op}} \langle [c]N; \gamma \rangle}$$

$$\mathsf{PQ} \; \frac{V \nearrow(A;\gamma')}{\langle \mathcal{K}[f\mathcal{V}];\gamma\rangle \xrightarrow{\overline{f}(A,c)} \langle \gamma \cdot \gamma' \cdot [c \mapsto \mathcal{K}] \rangle} \qquad \frac{V \nearrow(A;\gamma')}{\langle [c]\mathcal{V};\gamma\rangle \xrightarrow{\overline{c}(A)} \langle \gamma \cdot \gamma' \rangle} \; \mathsf{PA}$$

$$\mathsf{OQ} \xrightarrow{} \overline{\langle \gamma \rangle \xrightarrow{f(A,c)} \langle [c]\gamma(f)A;\gamma \rangle} \qquad \overline{\langle \gamma \rangle \xrightarrow{c(A)} \langle \gamma(c)[A];\gamma \rangle} \mathsf{OA}$$

Typing LTS

 \bullet Configurations $\mathbb S$ of $\mathcal L_{\mathsf{Ty}}$ keep track of typing of names:

- $\langle \Delta_0 \mid \bot; \Delta_P \rangle$ for Player configurations;
- $\langle \Delta_O \mid \Delta_P \rangle$ for Opponent configurations.
- ullet Transition checks typing constraints of patterns exchanged using ${\mathbb H}$
 - Named evaluations contexts [c]E have types ¬τ, with τ the type of the hole of E.

▶ Negation of types:
$$\begin{array}{ccc} (\tau \to \sigma)^{\perp} & \triangleq & \tau \times \neg \sigma \\ (\neg \tau)^{\perp} & \triangleq & \tau \end{array}$$

James Laird. "A Curry-style Semantics of Interaction: From Untyped to Second-Order Lazy $\lambda\mu$ -Calculus". In: International Conference on Foundations of Software Science and Computation Structures. FoSSaCS'20

Transitions of the Typing LTS

$$\mathsf{PQ} \; \frac{\Delta \Vdash \langle A, c \rangle : \Delta_{\mathsf{O}}(f)^{\perp}}{\langle \Delta_{\mathsf{O}} \mid \bot; \Delta_{\mathsf{P}} \rangle \; \frac{\overline{f}(A, c)}{\mathsf{T}_{\mathsf{Y}} \; \langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \cdot \Delta \rangle}$$

$$\mathsf{PA} \xrightarrow{\Delta \Vdash A : \Delta_{\mathsf{O}}(c)^{\perp}}_{\langle \Delta_{\mathsf{O}} \mid \bot; \Delta_{\mathsf{P}} \rangle \xrightarrow{\overline{c}(A)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \cdot \Delta \rangle}$$

$$\mathsf{OQ} \; \frac{\Delta \Vdash \langle A, c \rangle : \Delta_{\mathsf{P}}(f)^{\perp}}{\langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \rangle \xrightarrow{f(A,c)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \cdot \Delta \mid \bot; \Delta_{\mathsf{P}} \rangle}$$

$$OA \xrightarrow{\Delta \Vdash A : \Delta_{\mathsf{P}}(c)^{\perp}} \frac{\langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \rangle \xrightarrow{c(A)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \cdot \Delta \mid \bot; \Delta_{\mathsf{P}} \rangle}{\langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \rangle \xrightarrow{c(A)}}$$

Enforcing well-bracketing

Configurations of $\mathcal{L}_{\rm WB}$ are stacks π of continuation names introduced by Proponent.

$$\mathsf{PQ} \xrightarrow{\overline{f}(A,c)} \langle c :: \pi \rangle$$

$$\mathsf{PA} \xrightarrow[\langle \pi \rangle \xrightarrow{\overline{c}(A)} \langle \pi \rangle]{}$$

$$\mathsf{OQ} \xrightarrow[\langle \pi \rangle \xrightarrow{f(A,c)} \langle \pi \rangle]{}$$

$$\mathsf{OA} \xrightarrow[\langle c :: \pi \rangle \xrightarrow{c(A)} \langle \pi \rangle]{}$$

Polymorphism

Church style System F:

$$\frac{\Gamma, X: \mathtt{Type} \vdash M: \tau}{\Gamma \vdash \Lambda X.M: \forall X.\tau} \qquad \frac{\Gamma \vdash M: \forall X.\tau}{\Gamma \vdash M\tau: \tau' \{X:=\tau\}}$$

$$\frac{\Gamma \vdash M : \tau\{X := \tau'\}}{\Gamma \vdash \langle \tau'; M \rangle : \exists X.\tau}$$

 $\frac{\Gamma \vdash M : \exists X.\tau \qquad \Gamma, X : \texttt{Type}, x : \tau \vdash N : \tau'}{\Gamma \vdash \texttt{match } M \texttt{ with } (X, x) \Rightarrow N : \tau'}$

Polarization of type variables

- We tag type variables:
 - X^{\oplus} when Proponent choose the type associated to X;
 - X^{\ominus} when Opponent choose the type associated to X.
- Via a type translation $\text{pol}_{\rho}^{\kappa}(\cdot)$: Types \rightarrow Types, for $\kappa \in \{\oplus, \ominus\}$, defined as

$$\begin{array}{lll} \mathsf{pol}_{\rho}^{\kappa}(\tau \to \sigma) & \triangleq & \mathsf{pol}_{\rho}^{\kappa^{\ddagger}}(\tau) \to \mathsf{pol}_{\rho}^{\kappa}(\sigma) \\ \mathsf{pol}_{\rho}^{\kappa}(\forall X.\tau) & \triangleq & \forall X.\mathsf{pol}_{\rho\cdot[X \mapsto \kappa^{\ddagger}]}^{\kappa}(\theta) \\ \mathsf{pol}_{\rho}^{\kappa}(X) & \triangleq & X^{\rho(X)} \\ \mathsf{pol}_{\rho}^{\kappa}(\exists X.\tau) & \triangleq & \exists X.\mathsf{pol}_{\rho\cdot[X \mapsto \kappa]}^{\kappa}(\theta) \end{array}$$

with
$$(\cdot)^{\ddagger} \triangleq \begin{cases} \oplus \mapsto \ominus \\ \ominus \mapsto \oplus \end{cases}$$

Abstract values for Polymorphism

- Types exchanged by the two players are represented by type names α, β .
 - ► Type generativity to distinguish multiple uses of the same existential type ∃X.τ.
- Values exchanged as type X (i.e. polymorphic values) are represented by *polymorphic names* p, q.
 - Boxing discipline for polymorphic values.
 - Polymorphic names introduced by a Player can be replayed multiple times by the other player.

Negative (\ominus)	Positive (\oplus)	P-Positive	O-Positive	Neutral (\odot)
\rightarrow, \forall	$ $ unit, int, $\times, +, \exists$	X⊕	X⊖	Туре

Generating Polymorphic Abstract Values

- The decomposition $V \nearrow (A, \gamma)$ depends on the type of V:
 - We have $V \nearrow (p, [p \mapsto V])$ when V is of type α^{\oplus} .
 - Three possible implementations:
 - Define L₁|L_{Ty} as one basic blocks that uses a typed focusing relation (V, τ) Λ(A, γ)
 - $\textcircled{0} Uses an untyped focusing relation that can perform boxing non-deterministically, and uses \mathcal{L}_{Ty}$ to choose the right focusing according to the type.
 - Scompile System F to a language with explicit boxing.
- In abstract values provided by Opponent, one has to replace Proponent polymorphic names *p* by their concrete values γ(*p*)
 - reversing the focusing via a reduction relation $(A, \gamma) \searrow V$.

Typing abstract values

- Linear/non-linear typing judgment $\Gamma | \Delta \Vdash A : \tau_i$ with:
 - Δ the linear context for bound names;
 - Γ the non-linear context for free names.

$$\frac{\tau \text{ function type}}{\Gamma | f : \tau \Vdash \underline{f} : \tau} \qquad \overline{\Gamma | p : \alpha^{\oplus} \Vdash \underline{p} : \alpha^{\oplus}} \qquad \frac{\Gamma(p) = \alpha^{\ominus}}{\Gamma | \varnothing \Vdash p : \alpha^{\ominus}}$$
$$\frac{\Gamma | \Delta \Vdash A : \tau_i}{\Gamma | \Delta \Vdash \operatorname{inj}_i(A) : \tau_1 + \tau_2} \qquad \frac{\Gamma | \Delta_1 \Vdash A_1 : \tau_1 \qquad \Gamma | \Delta_2 \Vdash A_2 : \tau_2}{\Gamma | \Delta_1 \cdot \Delta_2 \Vdash \langle A_1; A_2 \rangle : \tau_1 \times \tau_2}$$

$$\frac{\Gamma|\Delta \Vdash A : \tau\{X := \alpha\}}{\Gamma|\Delta, \alpha : \text{Types} \Vdash \langle \alpha; A \rangle : \exists X.\tau}$$

- ()

Transitions of the Typing LTS

$$\mathsf{PQ} \; \frac{\Delta_{\mathsf{O}} | \Delta \Vdash (A, c) : \Delta_{\mathsf{O}}(f)^{\perp}}{\langle \Delta_{\mathsf{O}} \mid \bot; \Delta_{\mathsf{P}} \rangle \xrightarrow{\overline{f}(A, c)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \cdot \Delta \rangle}$$

$$\mathsf{PA} \; \frac{\Delta_{\mathsf{O}} | \Delta \Vdash A : \Delta_{\mathsf{O}}(c)^{\perp}}{\langle \Delta_{\mathsf{O}} \mid \bot; \Delta_{\mathsf{P}} \rangle \xrightarrow{\overline{c}(A)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \cdot \Delta \rangle}$$

$$\mathsf{OQ} \; \frac{\Delta_{\mathsf{P}} | \Delta \Vdash (A, c) : \Delta_{\mathsf{P}}(f)^{\perp \ddagger}}{\langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \rangle \xrightarrow{f(A, c)}_{\mathsf{Ty}} \langle \Delta_{\mathsf{O}} \cdot \Delta \mid \bot; \Delta_{\mathsf{P}} \rangle}$$

$$\mathrm{OA} \; \frac{\Delta_{\mathsf{P}} | \Delta \Vdash A : \Delta_{\mathsf{P}}(c)^{\perp \ddagger}}{\langle \Delta_{\mathsf{O}} \mid \Delta_{\mathsf{P}} \rangle \xrightarrow{c(A)}_{\mathsf{T}_{\mathsf{Y}}} \langle \Delta_{\mathsf{O}} \cdot \Delta \mid \bot; \Delta_{\mathsf{P}} \rangle}$$

An example of polymorphic interaction

- Interaction at type $\forall X.\exists Y.(X \rightarrow Y) \times (Y \rightarrow Y)$
- between the term $V \triangleq \Lambda X . \langle X; \langle \lambda x.x; \lambda x.x \rangle \rangle$.
- and the context let z =•unit in match z with $\langle Y; \langle w_1; w_2 \rangle \rangle \Rightarrow w_2(w_1())$
- generates the trace

 $\overline{c_0}(f) \cdot f(\alpha, c_1) \cdot \overline{c_1}(\beta; \langle g_1; g_2 \rangle) \cdot g_1(p, c_2) \cdot \overline{c_2}(q) \cdot g_2(q, c_3) \cdot \overline{c_3}(p)$

Adding mutable references

- We extend the programming language with
 - reference creation ref*M* of type τ ref,
 - assignation M := N
 - dereferencing !M
- Stores S are partial maps from locations ℓ to values used to keep track of the values of references
- Operational semantics is defined via the following reduction rules:

$$\begin{array}{lll} (E[\operatorname{ref} V]; S) & \mapsto_{\operatorname{op}} & (E[\ell]; S \cdot [\ell \mapsto V]) \\ (E[\ell := V; S]) & \mapsto_{\operatorname{op}} & (E[()]; S[\ell \mapsto V]) \\ (E[!\ell]; S) & \mapsto_{\operatorname{op}} & (E[S(\ell)]; S) \end{array}$$

- Locations ℓ are parts of patterns
 - to compare physical equality of locations

Interactive LTS in presence of references

$$\mathsf{op}\;\frac{(\mathsf{\textit{M}};\mathtt{S})\mapsto_{\mathsf{op}}(\mathsf{\textit{N}};\mathtt{T})}{\langle[c]\mathsf{\textit{M}};\mathtt{S};\gamma\rangle\xrightarrow{\mathsf{op}}\langle[c]\mathsf{\textit{N}};\mathtt{T};\gamma\rangle}$$

$$\mathsf{PQ} \; \frac{V \nearrow(A;\gamma')}{\langle \mathcal{K}[\mathcal{f}\mathcal{V}]; \mathsf{S}; \gamma \rangle \xrightarrow{\overline{\mathcal{f}}(\mathcal{A}, c)} \langle \mathsf{S}; \gamma \cdot \gamma' \cdot [\mathbf{c} \mapsto \mathcal{K}] \rangle} \quad \frac{V \nearrow(A;\gamma')}{\langle [\mathbf{c}]\mathcal{V}; \mathsf{S}; \gamma \rangle \xrightarrow{\overline{\mathbf{c}}(\mathcal{A})} \langle \mathsf{S}; \gamma \cdot \gamma' \rangle} \mathsf{PA}$$

$$OQ \xrightarrow{} \overline{\langle \mathbf{S}; \gamma \rangle \xrightarrow{f(A,c)} \langle [c]\gamma(f)A; \mathbf{S}; \gamma \rangle} \qquad \overline{\langle \mathbf{S}; \gamma \rangle \xrightarrow{c(A)} \langle \gamma(c)[M]; \mathbf{S}; \gamma \rangle} OA$$

For sake of simplicity here:

- Only locations ℓ of type unit ref are allowed to appear in abstract values A
- General case: need move-with-abstract-store (m; *R*) with *R* representing the abstract values stored in the disclosed part of S.

Enforcing non-omniscience

- Keep track of the locations that are disclosed by one player to the other
 - escape analysis of locations.
- Via an LTS \mathcal{L}_{discl} whose configurations are sets D of locations known by both P and O.
- Enforce Opponent's *non-omniscience*: O cannot play a Proponent's location that has not been disclosed.

$$\frac{\mathsf{fn}(\mathsf{m}) \subseteq D \quad \mathsf{bn}(\mathsf{m}) \cap D = \varnothing}{\langle D \rangle \xrightarrow{\mathsf{m}} \langle D \cup \mathsf{bn}(\mathsf{m}) \rangle}$$

Exceptions and Effect Type System (j.w.w. with Hamza Jaâfar)

- We extend the programming language with:
 - exception creation exception e of au, of type au exn,
 - which generates exception values e similar to locations ℓ ;
 - raise operation of exceptions raise V, which inhabit any type τ .
- both e A and raise (e A) are part of patterns.
- Effect type system $\tau \rightarrow_{\varepsilon} \sigma$ with ε a set of exceptions $\{e_1, \ldots, e_i\}$
 - ▶ to restrict Opponent's behavior wrt the exceptions it can raise.
- Generalization to algebraic effects and handlers: WIP.

Composing OGS configurations

- Specifying both the behavior of Proponent and Opponent by programs.
- Via a synchronization process defined as a parallel composition plus hiding of LTSs.

Definition (Parallel composition with hiding)

Taking $\mathcal{L}_1 = (\text{States}_1, \text{Actions}, \rightarrow_1)$ and $\mathcal{L}_2 = (\text{States}_2, \text{Actions}, \rightarrow_2)$ two LTSs sharing the same set of actions, their *parallel composition with hiding* $\mathcal{L}_1 || \mathcal{L}_2$, is the LTS ($\text{States}_1 \times \text{States}_2, \{\text{op}, \text{sync}\}, \rightarrow$) with \rightarrow defined as:

$$\frac{\mathbb{I}_{1} \xrightarrow{\text{op}} \mathbb{I}_{1} \mathbb{J}_{1}}{(\mathbb{I}_{1}; \mathbb{I}_{2}) \xrightarrow{\text{op}} (\mathbb{J}_{1}; \mathbb{I}_{2})} \qquad \frac{\mathbb{I}_{1} \xrightarrow{\text{op}} \mathbb{I}_{2} \mathbb{J}_{2}}{(\mathbb{I}; \mathbb{S}) \xrightarrow{\text{op}} (\mathbb{I}_{1}; \mathbb{J}_{2})} \qquad \frac{\mathbb{I}_{1} \xrightarrow{\text{m}} \mathbb{I}_{1} \mathbb{I}_{2} \xrightarrow{\overline{\text{m}}} \mathbb{I}_{2} \mathbb{J}_{2}}{(\mathbb{I}_{1}; \mathbb{I}_{2}) \xrightarrow{\text{sync}} (\mathbb{J}_{1}; \mathbb{J}_{2})}$$

Full-abstraction of trace equivalence

Theorem

OGS Trace equivalence and contextual equivalence of the programming language coincide.

- Soundness relies on a congruence and adequacy result for the parallel composition with hiding operator.
- Full-abstraction relies on a definability result to transform a trace t into a term that generates this trace;
 - mutable references is crucial for this result to hold;
 - needs to relax the notion of trace equivalence to complete trace equivalence: traces where all questions have been answered.

Guilhem Jaber and Nikos Tzevelekos. "Trace Semantics for Polymorphic References". In: *Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '16

Towards Model-Checking

How to automatically check safety properties of the OGS LTS?

- For example "The LTS does not reach a configuration of the shape $\langle [c_0]$ raise e; S; $\gamma \rangle$ unless e has been raised by Opponent before".
- Difficult to prove automatically because the interactions can be arbitrary long due to
 - recursion for Proponent;
 - absence of restriction on the number of time function names can be called by Opponent.

Can we bound Opponent's behavior?

Linearizing the OGS LTS

 Opponent uses values and contexts provided by Opponent only once, when provided:

$$\begin{array}{c} \operatorname{op} \frac{M \mapsto_{\operatorname{op}} N}{\langle [c]M \rangle \xrightarrow{\operatorname{op}} \langle [c]N \rangle} \\ \\ \operatorname{PQ} \frac{V \nearrow (A;\gamma)}{\langle K[fV] \rangle \xrightarrow{\overline{f}(A,c)} \langle \gamma \cdot [c \mapsto K] \rangle} & \frac{V \nearrow (A;\gamma)}{\langle [c]V \rangle \xrightarrow{\overline{c}(A)} \langle \gamma \rangle} \operatorname{PA} \\ \\ \operatorname{OQ} \frac{}{\langle \gamma \rangle \xrightarrow{\overline{f}(A,c)} \langle [c]\gamma(f)A \rangle} & \overline{\langle \gamma \rangle \xrightarrow{c(A)} \langle \gamma(c)[A] \rangle} \end{array} OA$$

• This LTS generates a call-by-value variant of Bohm trees.

Correspondence of bisimilarities

- Bisimilarity for this LTS is exactly Lassen's eager normal-form bisimilarity.
 Søren B. Lassen. "Eager normal form bisimulation". In: 20th Annual IEEE Symposium on Logic in Computer Science (LICS'05). 2005
- For the pure cbv λ-calculus, OGS bisimilarity and eager normal-form bisimilarity coincide.
 Guilhem Jaber and Davide Sangiorgi. "Games, mobile processes, and functions". In: 30th EACSL Annual Conference on Computer Science

Logic (CSL 2022). 2022

In presence of local references, this linearization is not sound anymore!

$$\begin{array}{l} & \operatorname{op} \frac{(M; \operatorname{S}) \mapsto_{\operatorname{op}} (N; \operatorname{T})}{\langle [c]M; \operatorname{S} \rangle \xrightarrow{\operatorname{op}} \langle [c]N; \operatorname{T} \rangle} \\ & \operatorname{PQ} \frac{V \nearrow (A; \gamma)}{\langle \mathcal{K}[fV]; \operatorname{S} \rangle \xrightarrow{\overline{f}(A,c)} \langle \operatorname{S}; \gamma \cdot [c \mapsto \mathcal{K}] \rangle} & \frac{V \nearrow (A; \gamma)}{\langle [c]V; \operatorname{S} \rangle \xrightarrow{\overline{c}(A)} \langle \operatorname{S}; \gamma \rangle} \end{array} \operatorname{PA} \\ & \operatorname{OQ} \frac{}{\langle \operatorname{S}; \gamma \rangle \xrightarrow{\overline{f}(A,c)} \langle [c]\gamma(f)A; \operatorname{S} \rangle} & \overline{\langle \operatorname{S}; \gamma \rangle \xrightarrow{\overline{c}(A)} \langle \gamma(c)[A]; \operatorname{S} \rangle} \end{array} \xrightarrow{\operatorname{OA}} \\ & \operatorname{let \ count} = \operatorname{ref} 0 \ (* \ \operatorname{private} \ *) \\ & \operatorname{let \ check} \ () = \operatorname{assert} \ (\operatorname{not}(\operatorname{odd} \ ! \operatorname{count})) \end{array}$$

One needs to test inc and check on all reachable values stored in count.

Store invariants

Consider formulas specifying sets of stored values, for example

 $\{[\texttt{count}\mapsto 2k]\mid k\in\mathbb{N}\}$

$$\begin{array}{c} \mathsf{op} \ \frac{(M; \, \mathsf{S}) \mapsto_{\mathsf{op}} (N; \, \mathsf{T})}{\langle M; \, \mathsf{S}; \mathcal{I} \rangle \xrightarrow{\mathsf{op}} \langle N; \, \mathsf{T}; \mathcal{I} \rangle} \\ \mathsf{PQ} \ \frac{V \nearrow (A; \gamma) \quad \mathsf{S} \in \mathcal{I}}{\langle \mathcal{K}[fV]; \, \mathsf{S}; \mathcal{I} \rangle \xrightarrow{\overline{f}(A,c)} \langle \mathcal{I}; \gamma \cdot [c \mapsto \mathcal{K}] \rangle} \qquad \frac{V \nearrow (A; \gamma) \quad \mathsf{S} \in \mathcal{I}}{\langle [c] V; \, \mathsf{S}; \mathcal{I} \rangle \xrightarrow{\overline{c}(A)} \langle \mathcal{I}; \gamma \rangle} \ \mathsf{PA} \\ \mathbf{S} \in \mathcal{I} \end{array}$$

$$OQ \xrightarrow{\mathbf{S} \in \mathcal{I}} \frac{\mathbf{S} \in \mathcal{I}}{\langle \mathcal{I}; \gamma \rangle \xrightarrow{f(A,c)} \langle [c]\gamma(f)A \rangle; \mathbf{S}; \mathcal{I}} \qquad \frac{\mathbf{S} \in \mathcal{I}}{\langle \mathcal{I}; \gamma \rangle \xrightarrow{c(A)} \langle \gamma(c)[A]; \mathbf{S}; \mathcal{I} \rangle} OA$$

Framing store invariants

- Introduce a separating conjunction * between invariants
- provide a way to add new invariants during the interaction for freshly-allocated references.

$$\begin{array}{c} \operatorname{op} \frac{(M; \, \mathrm{S}) \mapsto_{\operatorname{op}} (N; \, \mathrm{T})}{\langle M; \, \mathrm{S}; \mathcal{I} \rangle \xrightarrow{\operatorname{op}} \langle N; \, \mathrm{T}; \mathcal{I} \rangle} \\ \\ \frac{V \nearrow (A; \gamma) \quad \mathrm{S} \in \mathcal{I} * \mathcal{J}}{\langle \mathcal{K}[fV]; \, \mathrm{S}; \mathcal{I} \rangle \xrightarrow{\overline{f}(A,c)} \langle \mathcal{I} * \mathcal{J}; \gamma \cdot [c \mapsto \mathcal{K}] \rangle} \quad \frac{V \nearrow (A; \gamma) \quad \mathrm{S} \in \mathcal{I} * \mathcal{J}}{\langle [c] \, V; \, \mathrm{S}; \mathcal{I} \rangle \xrightarrow{\overline{c}(A)} \langle \mathcal{I} * \mathcal{J}; \gamma \rangle} \end{array}$$

$$OQ \xrightarrow{\mathbf{S} \in \mathcal{I}} \frac{\mathbf{S} \in \mathcal{I}}{\langle \mathcal{I}; \gamma \rangle \xrightarrow{f(A,c)} \langle [c]\gamma(f)A \rangle; \mathbf{S}; \mathcal{I}} \qquad \frac{\mathbf{S} \in \mathcal{I}}{\langle \mathcal{I}; \gamma \rangle \xrightarrow{c(A)} \langle \gamma(c)[A]; \mathbf{S}; \mathcal{I} \rangle} OA$$

Invariants

- Computed via symbolic evaluation $(M; \mathcal{I}) \mapsto_{op} (N; \mathcal{J})$
 - via predicate transformer semantics.
- For location disclosure (unit ref): invariants are enough
 - WIP with Daniel Hirshckoff and Enguerrand Prebet.
- For polymorphic values, we *conjecture* that invariants are enough too
 - if true, this would have important consequences for full-abstraction of logical relations for System F.

Invariants are not enough for mutable store

let count = ref 0 (* private *)
let awk f = count:= 1; f(); assert (!count=1)

One needs a transition system of invariants

- (Worlds, □) with worlds W ∈ Worlds of the shape (s, I) with s an abstract state and I an invariant.
- Allow Opponent to navigate arbitrarily far in this transition system

Derek Dreyer, Georg Neis, and Lars Birkedal. "The impact of higher-order state and control effects on local relational reasoning". In: *Journal of Functional Programming* 22.4-5 (2012), pp. 477–528

Kripke OGS

Kripke Eager Normal Form Bisimulation

- Bisimilarity over this LTS
 - using worlds with relational invariants over store
 - \blacktriangleright incorporates the well-bracketed constraints of \mathcal{L}_{WB} by distinguishing OQ and OA evolutions of worlds
- Fully-abstract for the a language with higher-order references.

Guilhem Jaber and Andrzej S. Murawski. "Compositional Relational Reasoning via Operational Game Semantics". In: *Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science*. 2021

Temporal reasoning (WIP with Andrzej Murawski)

- Abstract away the worlds
 - using temporal modalities \diamond and \Box .
- Distinguish OQ and OA evolutions of worlds
 - OA transitions of worlds are well-bracketed
 - represented using visibly-pushdown modalities.
- Interactions inside while-loops represented using greatest fixpoints formulas of the μ -calculus.

Conclusion

- First steps towards automated verifications of effectul polymorphically typed programs.
 - Safety property as a model-checking problem over infinite trees
 - with linearized Opponent behavior
 - and temporal reasoning over resources.
- Future work:
 - Other OCaml's features
 - ★ GADTs;
 - module system.
 - Invariant generation
 - via weakest precondition generators;
 - ★ abstract interpretation;
 - ★ abstract domains for ADTs.
 - Reducing the model-checking problem to satisfiability of Constrained Horn Clauses.
 - Implementation!