
Certified Mergeable Replicated Data
Types

Kartik Nagar

Joint work with Vimala S, Adharsh Kamath and KC
Sivaramakrishnan.

To appear in PLDI 22.

1Certified Mergeable Replicated Data Types

Outline

• Introduction
• Replicated Systems
• MRDT

• MRDT Verification Problem
• Our proposed technique
• Example
• Experimental Results
• Conclusion

Certified Mergeable Replicated Data Types 2

Replicated Systems

• Creating multiple replicas of data, independently operated, potentially geo-
distributed.
• Many benefits

• Fault Tolerance
• Availability
• Low latency for geo-distributed clients

• How to safely write applications for replicated systems?
• Programming would be easier if it appears as a single, ‘centralized’ system.
• Unfortunately, this incurs massive synchronization cost.

• Instead, we have a library of basic replicated data types with slightly
‘weaker’ semantics.

Certified Mergeable Replicated Data Types 3

Certified Mergeable Replicated Data Types 4

• Version-control model of replication.
• Three-way merge function – 2 concurrent versions and their Lowest Common Ancestor (LCA)

between them.

5

7 3

5 4

6

+2 -2

+1

v! v" merge lca v!v" = lca + v! − lca + v" − lca

Mergeable Replicated Data Types (MRDTs)

• Consider the counter MRDT:

Certified Mergeable Replicated Data Types 5

add a rem a

Desired specification: Add wins

rd should return a

Set RDT

Certified Mergeable Replicated Data Types 6

[(a,1)]

[(a,1); (a,2)] []

[(a,2)]

add a rem a

A B

Implementation

Observed-Remove Set MRDT

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

with timestamps C0 and C1 , if 0 happens-before 1, then C0 < C1 .
The data type implementation can use the timestamp pro-
vided to implement the con�ict-resolution strategy but is also
free to ignore it. For simplicity of presentation, we assume
that the timestamps are positive integers,)8<4BC0<? = N.
The datastore may choose to implement the timestamp us-
ing Lamport clocks [21], along with the unique branch id to
provide uniqueness of timestamps.
A branch 0 may get updates from another branch 1 by

performing a merge, which modi�es the state of the object in
branch 0. In this case, the datastore will invoke<4A64 (f;20,
f0,f1) where f0 and f1 are the current states of branch 0
and 1 respectively, and f;20 is the lowest common ancestor
(LCA) of the two branches. The LCA of the two branches is
the most recent state from which the two branches diverged.
We assume that the execution of the store will begin with a
single branch, fromwhich new branches may be dynamically
created. Hence, for any two branches, the LCA will always
exist.

2.1.1 OR-set. We illustrate MRDT implementations using
the example of an OR-set. Recall from §1 that the OR-set
favours the addition in the case where there is a concur-
rent addition and removal of the same element on di�erent
branches.

1: ⌃ = P(N ⇥ N)
2: f0 = {}
3: 3> (A3,f, C) = (f, {0 | (0, C) 2 f})
4: 3> (033 (0),f, C) = (f [{(0, C)},?)
5: 3> (A4<>E4 (0),f, C) = ({4 2 f | 5 BC (4) < 0},?)
6: <4A64 (f;20,f0,f1) =

(f;20 \ f0 \ f1) [(f0 � f;20) [(f1 � f;20)

Figure 1. OR-set data type implementation

Let us assume that the elements in the OR-set are natural
numbers. Its type signature would be ($?>AB4C ,+0;>AB4C) =
({add(0), remove(0) | 0 2 N} [{rd}, {P(N),?}). Figure 1
shows an MRDT implementation of the OR-set data type.
The state of the object is a set of pairs of the element and the
timestamp. The operations and the merge remain the same
as described in §1.1. Note that we use 5 BC and B=3 functions
to obtain the �rst and second elements respectively from a
tuple. This implementation may have duplicate entries of
the same element with di�erent timestamps.

2.1.2 Space-e�cient OR-set (OR-set-space). One pos-
sibility to make this OR-set implementation more space-
e�cient is by removing the duplicate entries from the set.
A duplicate element will appear in the set if the client calls
add(4) for an element 4 which is already in the set. Can we
reimplement add such that we leave the set as is if the set
already has 4? Unfortunately, this breaks the intent of the
OR-set. In particular, if there were a concurrent removal of

4 on a di�erent branch, then 4 will be removed when the
branches are merged. The key insight is that the e�ect of the
duplicate add has to be recorded to not lose additions.

1: ⌃ = P(N ⇥ N)
2: f0 = {}
3: 3> (A3,f, C) = (f, {0 | (0, C) 2 f})
4: 3> (033 (0),f, C) = if (0, _) 2 f then (f [0 7! C],?)
5: else (f [{(0, C)},?)
6: 3> (A4<>E4 (0),f, C) = ({4 2 f | 5 BC (4) < 0},?)
7: <4A64 (f;20,f0,f1) =
8: {4 | 4 2 (f;20 \ f0 \ f1)} [
9: {4 | 4 2 (f0 � f;20) ^ (5 BC (4), _) 8 (f1 � f;20)} [
10: {4 | 4 2 (f1 � f;20) ^ (5 BC (4), _) 8 (f0 � f;20)} [
11: {4 | 4 2 (f0 � f;20) ^
12: (8C . (5 BC (4), C) 2 (f1 � f;20)) B=3 (4) > C)} [
13: {4 | 4 2 (f1 � f;20) ^
14: (8C . (5 BC (4), C) 2 (f0 � f;20)) B=3 (4) > C)}

Figure 2. Space-e�cient OR-set (OR-set-space) implementa-
tion

Figure 2 provides the implementation of the space-e�cient
OR-set. The read and the remove operations remain the same
as the earlier implementation. If the element being added is
not already present in the set, then the element is added to
the set along with the timestamp. Otherwise, the timestamp
of the existing entry is updated to the new timestamp. Given
that our timestamps are unique, the new operation’s times-
tamp will be distinct from the old timestamp. This prevents
a concurrent remove from deleting this new addition.

Another possibility of duplicates is that the same element
may concurrently be added on two di�erent branches. The
implementation of the merge function now has to take care
of this possibility and not include duplicates. An element in
the merged set was either in the LCA and the two concurrent
states (line 8), or was only added in one of the branches (lines
9 and 10), or was added in both the branches in which case
we pick the entry with the larger timestamp (lines 11–14).

2.2 Speci�cation
Given that there are several candidates for implementing
an MRDT, we need a way to specify the behaviour of an
MRDT so that we may ask the question of whether the given
implementation satis�es the speci�cation. We now present a
declarative framework for specifying MRDTs which closely
follows the framework presented by Burckhardt et al. [5].
We de�ne our speci�cations on an abstract state, which cap-
ture the state of the distributed store. It consists of events
in execution of the distributed store, along with a visibility
relation among them.

De�nition 2.2. An abstract state for a data type g = ($?g ,
+0;g) is a tuple � = h⇢,>?4A , AE0;, C8<4, E8Bi, where

Certified Mergeable Replicated Data Types 7

Abstract state

add a rem a

rd should return a

• 𝐸 is the set of events
• 𝑜𝑝𝑒𝑟: 𝐸 → 𝑂𝑝
• 𝑟𝑣𝑎𝑙: 𝐸 → 𝑉𝑎𝑙
• 𝑡𝑖𝑚𝑒: 𝐸 → ℕ
• 𝑣𝑖𝑠 ⊆ 𝐸 × 𝐸

Observed-Remove Set Specification

Visibility Relation in Abstract State

Certified Mergeable Replicated Data Types 8

𝑒!

𝑒"

𝑒! 𝑒"
𝑣𝑖𝑠

𝑒!

𝑒"

𝑒! 𝑒"
𝑣𝑖𝑠

Certified Mergeable Replicated Data Types 9

Specification

Abstract state

add a rem a

rd should return a

• 𝐸 is the set of events
• 𝑜𝑝𝑒𝑟: 𝐸 → 𝑂𝑝
• 𝑟𝑣𝑎𝑙: 𝐸 → 𝑉𝑎𝑙
• 𝑡𝑖𝑚𝑒: 𝐸 → ℕ
• 𝑣𝑖𝑠 ⊆ 𝐸 × 𝐸

Observed-Remove Set Specification

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

• ⇢ ✓ ⇢E4=C is a set of events,
• >?4A : ⇢ ! $?g associates the data type operation
with each event,

• AE0; : ⇢ ! +0;g associates the return value with each
event,

• C8<4 : ⇢ !)8<4BC0<? associates the timestamp at
which an event was performed,

• E8B ✓ ⇢ ⇥⇢ is an irre�exive, asymmetric and transitive
visibility relation.

Given 4
E8B��! 5 , 4 is said to causally precede 5 . In our

setting, it may be the case that the operation of 5 follows
the operation of 4 on the same branch, or the operations
of 5 and 4 were performed on di�erent branches 1 5 and 14 ,
but before the operation of 5 , the branch 14 on which the
operation of 4 was performed was merged info 1 5 .
We specify a data type g by a function Fg which deter-

mines the return value of an operation > based on prior
operations applied to that object. Fg also takes as a param-
eter the abstract state that is visible to the operation. Note
that the abstract state contains all the information that is
necessary to specify the return value of > .

De�nition 2.3. A replicated data type speci�cation for a
type g is a functionFg that given an operation> 2 $?g and an
abstract state � for g , speci�es a return value Fg (>, �) 2 +0;g .

2.2.1 OR-set speci�cation. As an illustration of the spec-
i�cation language, let us consider the OR-set. For the OR-set,
both add and remove operations always return ?. We can
formally specify the ‘add-wins’ con�ict resolution strategy
as follows:

F>AB4C (rd, h⇢,>?4A , AE0;, C8<4, E8Bi) = {0 | 94 2 ⇢ . >?4A (4)

= add(0) ^ ¬(95 2 ⇢ . >?4A (5) = remove(0) ^ 4
E8B��! 5)}

In words, the read operation returns all those elements for
which there exists an add operation of the element which is
not visible to a remove operation of the same element. Hence,
if an add and remove operation are concurrent, then the add
would win. Notice that the speci�cation, while precisely
encoding the required semantics, is far removed from the
MRDT implementations of the OR-set that we saw earlier.
Providing a framework for bridging this gap in an automated
and mechanized manner is one of the principal contributions
of this work.

3 Store Semantics and MRDT Correctness
In this section, we formally de�ne the semantics of a repli-
cated datastore S consisting of a single object with data type
implementation Dg . Note that the store semantics can be
easily generalized to multiple objects (with possibly di�erent
data types) since the store treats each object independently.
We then de�ne formally what it means for data type imple-
mentations to satisfy their speci�cations. We also introduce

a novel notion of convergence across all the branches called
convergence modulo observable behaviour that di�ers from
the standard notions of eventual consistency. This property
allows us to have more e�cient but veri�ed merges.

The semantics of the store is a set of all its executions. In
order to easily relate the speci�cations which are in terms of
abstract states to the implementation, we maintain both the
concrete state (as given by the data type implementation)
and the abstract state at every branch in our store semantics.
Formally, the semantics of the store are parametrised by a
data type g and its implementation ⇡g = (⌃,f0,3>,<4A64).
They are represented by a labelled transition systemM⇡g =
(�,!). Assume that B is the set of all possible branches.
Each state in � is a tuple (q, X, C) where,

• q : B ô ⌃ is a partial function that maps branches to
their concrete states,

• X : B ô � is a partial function that maps branches to
their abstract states,

• C 2)8<4BC0<? maintains the current timestamp to be
supplied to operations.

The initial state of the labelled transition system consists
of only one branch1?, and is represented by⇠? = (q?, X?, 0)
where q? = [1? 7! f0] and X? = [1? 7! �0].

Here, f0 is the initial state as given by the implementation
⇡g , while �0 is the empty abstract state, whose event set
is empty. In order to describe the transition rules, we �rst
introduce abstract operations 3>#, <4A64# and ;20# which
perform a data type operation, merge operation and �nd the
lowest common ancestor respectively on abstract states:

3>#h� , 4,>?,0, Ci
= h� .⇢ [{4}, � .>?4A [4 7! >?], � .AE0; [4 7! 0],

� .C8<4 [4 7! C], � .E8B [{(5 , 4) | 5 2 � .⇢)}i

<4A64# (�0, �1) = �< where
�< .⇢ = �0 .⇢ [�1 .⇢
prop 2 {>?4A , AE0;, C8<4}

�< .prop(4) =
(
�0 (4) if 4 2 �0 .⇢

�1 (4) if 4 2 �1 .⇢
�< .E8B = �0 .E8B [�1 .E8B

;20# (�0, �1) = h�0 .⇢ \ �1 .⇢, �0 .>?4A |⇢; ,
�0 .AE0; |⇢; , �0 .C8<4 |⇢; , �0 .E8B |⇢; i

In terms of abstract states, 3># simply adds the new event
4 to the set of events, appropriately setting the various event
properties and visibility relation. <4A64# of two abstract
states simply takes a union of the events in the two states.
Similarly, the ;20# of two abstract states would be the inter-
section of events in the two states.

Figure 3 describes the transition function!. The �rst rule
describes the creation of a new branch 12 from the current
branch 11. Both the concrete and abstract states of the new

The problem

Certified Mergeable Replicated Data Types 10

Implementation Specification

1. Does the implementation satisfy the specification?
2. Does the implementation ensure convergence?

• Two replicas which have witnessed the same set of events must have the
same state.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

with timestamps C0 and C1 , if 0 happens-before 1, then C0 < C1 .
The data type implementation can use the timestamp pro-
vided to implement the con�ict-resolution strategy but is also
free to ignore it. For simplicity of presentation, we assume
that the timestamps are positive integers,)8<4BC0<? = N.
The datastore may choose to implement the timestamp us-
ing Lamport clocks [21], along with the unique branch id to
provide uniqueness of timestamps.
A branch 0 may get updates from another branch 1 by

performing a merge, which modi�es the state of the object in
branch 0. In this case, the datastore will invoke<4A64 (f;20,
f0,f1) where f0 and f1 are the current states of branch 0
and 1 respectively, and f;20 is the lowest common ancestor
(LCA) of the two branches. The LCA of the two branches is
the most recent state from which the two branches diverged.
We assume that the execution of the store will begin with a
single branch, fromwhich new branches may be dynamically
created. Hence, for any two branches, the LCA will always
exist.

2.1.1 OR-set. We illustrate MRDT implementations using
the example of an OR-set. Recall from §1 that the OR-set
favours the addition in the case where there is a concur-
rent addition and removal of the same element on di�erent
branches.

1: ⌃ = P(N ⇥ N)
2: f0 = {}
3: 3> (A3,f, C) = (f, {0 | (0, C) 2 f})
4: 3> (033 (0),f, C) = (f [{(0, C)},?)
5: 3> (A4<>E4 (0),f, C) = ({4 2 f | 5 BC (4) < 0},?)
6: <4A64 (f;20,f0,f1) =

(f;20 \ f0 \ f1) [(f0 � f;20) [(f1 � f;20)

Figure 1. OR-set data type implementation

Let us assume that the elements in the OR-set are natural
numbers. Its type signature would be ($?>AB4C ,+0;>AB4C) =
({add(0), remove(0) | 0 2 N} [{rd}, {P(N),?}). Figure 1
shows an MRDT implementation of the OR-set data type.
The state of the object is a set of pairs of the element and the
timestamp. The operations and the merge remain the same
as described in §1.1. Note that we use 5 BC and B=3 functions
to obtain the �rst and second elements respectively from a
tuple. This implementation may have duplicate entries of
the same element with di�erent timestamps.

2.1.2 Space-e�cient OR-set (OR-set-space). One pos-
sibility to make this OR-set implementation more space-
e�cient is by removing the duplicate entries from the set.
A duplicate element will appear in the set if the client calls
add(4) for an element 4 which is already in the set. Can we
reimplement add such that we leave the set as is if the set
already has 4? Unfortunately, this breaks the intent of the
OR-set. In particular, if there were a concurrent removal of

4 on a di�erent branch, then 4 will be removed when the
branches are merged. The key insight is that the e�ect of the
duplicate add has to be recorded to not lose additions.

1: ⌃ = P(N ⇥ N)
2: f0 = {}
3: 3> (A3,f, C) = (f, {0 | (0, C) 2 f})
4: 3> (033 (0),f, C) = if (0, _) 2 f then (f [0 7! C],?)
5: else (f [{(0, C)},?)
6: 3> (A4<>E4 (0),f, C) = ({4 2 f | 5 BC (4) < 0},?)
7: <4A64 (f;20,f0,f1) =
8: {4 | 4 2 (f;20 \ f0 \ f1)} [
9: {4 | 4 2 (f0 � f;20) ^ (5 BC (4), _) 8 (f1 � f;20)} [
10: {4 | 4 2 (f1 � f;20) ^ (5 BC (4), _) 8 (f0 � f;20)} [
11: {4 | 4 2 (f0 � f;20) ^
12: (8C . (5 BC (4), C) 2 (f1 � f;20)) B=3 (4) > C)} [
13: {4 | 4 2 (f1 � f;20) ^
14: (8C . (5 BC (4), C) 2 (f0 � f;20)) B=3 (4) > C)}

Figure 2. Space-e�cient OR-set (OR-set-space) implementa-
tion

Figure 2 provides the implementation of the space-e�cient
OR-set. The read and the remove operations remain the same
as the earlier implementation. If the element being added is
not already present in the set, then the element is added to
the set along with the timestamp. Otherwise, the timestamp
of the existing entry is updated to the new timestamp. Given
that our timestamps are unique, the new operation’s times-
tamp will be distinct from the old timestamp. This prevents
a concurrent remove from deleting this new addition.

Another possibility of duplicates is that the same element
may concurrently be added on two di�erent branches. The
implementation of the merge function now has to take care
of this possibility and not include duplicates. An element in
the merged set was either in the LCA and the two concurrent
states (line 8), or was only added in one of the branches (lines
9 and 10), or was added in both the branches in which case
we pick the entry with the larger timestamp (lines 11–14).

2.2 Speci�cation
Given that there are several candidates for implementing
an MRDT, we need a way to specify the behaviour of an
MRDT so that we may ask the question of whether the given
implementation satis�es the speci�cation. We now present a
declarative framework for specifying MRDTs which closely
follows the framework presented by Burckhardt et al. [5].
We de�ne our speci�cations on an abstract state, which cap-
ture the state of the distributed store. It consists of events
in execution of the distributed store, along with a visibility
relation among them.

De�nition 2.2. An abstract state for a data type g = ($?g ,
+0;g) is a tuple � = h⇢,>?4A , AE0;, C8<4, E8Bi, where

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

• ⇢ ✓ ⇢E4=C is a set of events,
• >?4A : ⇢ ! $?g associates the data type operation
with each event,

• AE0; : ⇢ ! +0;g associates the return value with each
event,

• C8<4 : ⇢ !)8<4BC0<? associates the timestamp at
which an event was performed,

• E8B ✓ ⇢ ⇥⇢ is an irre�exive, asymmetric and transitive
visibility relation.

Given 4
E8B��! 5 , 4 is said to causally precede 5 . In our

setting, it may be the case that the operation of 5 follows
the operation of 4 on the same branch, or the operations
of 5 and 4 were performed on di�erent branches 1 5 and 14 ,
but before the operation of 5 , the branch 14 on which the
operation of 4 was performed was merged info 1 5 .
We specify a data type g by a function Fg which deter-

mines the return value of an operation > based on prior
operations applied to that object. Fg also takes as a param-
eter the abstract state that is visible to the operation. Note
that the abstract state contains all the information that is
necessary to specify the return value of > .

De�nition 2.3. A replicated data type speci�cation for a
type g is a functionFg that given an operation> 2 $?g and an
abstract state � for g , speci�es a return value Fg (>, �) 2 +0;g .

2.2.1 OR-set speci�cation. As an illustration of the spec-
i�cation language, let us consider the OR-set. For the OR-set,
both add and remove operations always return ?. We can
formally specify the ‘add-wins’ con�ict resolution strategy
as follows:

F>AB4C (rd, h⇢,>?4A , AE0;, C8<4, E8Bi) = {0 | 94 2 ⇢ . >?4A (4)

= add(0) ^ ¬(95 2 ⇢ . >?4A (5) = remove(0) ^ 4
E8B��! 5)}

In words, the read operation returns all those elements for
which there exists an add operation of the element which is
not visible to a remove operation of the same element. Hence,
if an add and remove operation are concurrent, then the add
would win. Notice that the speci�cation, while precisely
encoding the required semantics, is far removed from the
MRDT implementations of the OR-set that we saw earlier.
Providing a framework for bridging this gap in an automated
and mechanized manner is one of the principal contributions
of this work.

3 Store Semantics and MRDT Correctness
In this section, we formally de�ne the semantics of a repli-
cated datastore S consisting of a single object with data type
implementation Dg . Note that the store semantics can be
easily generalized to multiple objects (with possibly di�erent
data types) since the store treats each object independently.
We then de�ne formally what it means for data type imple-
mentations to satisfy their speci�cations. We also introduce

a novel notion of convergence across all the branches called
convergence modulo observable behaviour that di�ers from
the standard notions of eventual consistency. This property
allows us to have more e�cient but veri�ed merges.

The semantics of the store is a set of all its executions. In
order to easily relate the speci�cations which are in terms of
abstract states to the implementation, we maintain both the
concrete state (as given by the data type implementation)
and the abstract state at every branch in our store semantics.
Formally, the semantics of the store are parametrised by a
data type g and its implementation ⇡g = (⌃,f0,3>,<4A64).
They are represented by a labelled transition systemM⇡g =
(�,!). Assume that B is the set of all possible branches.
Each state in � is a tuple (q, X, C) where,

• q : B ô ⌃ is a partial function that maps branches to
their concrete states,

• X : B ô � is a partial function that maps branches to
their abstract states,

• C 2)8<4BC0<? maintains the current timestamp to be
supplied to operations.

The initial state of the labelled transition system consists
of only one branch1?, and is represented by⇠? = (q?, X?, 0)
where q? = [1? 7! f0] and X? = [1? 7! �0].

Here, f0 is the initial state as given by the implementation
⇡g , while �0 is the empty abstract state, whose event set
is empty. In order to describe the transition rules, we �rst
introduce abstract operations 3>#, <4A64# and ;20# which
perform a data type operation, merge operation and �nd the
lowest common ancestor respectively on abstract states:

3>#h� , 4,>?,0, Ci
= h� .⇢ [{4}, � .>?4A [4 7! >?], � .AE0; [4 7! 0],

� .C8<4 [4 7! C], � .E8B [{(5 , 4) | 5 2 � .⇢)}i

<4A64# (�0, �1) = �< where
�< .⇢ = �0 .⇢ [�1 .⇢
prop 2 {>?4A , AE0;, C8<4}

�< .prop(4) =
(
�0 (4) if 4 2 �0 .⇢

�1 (4) if 4 2 �1 .⇢
�< .E8B = �0 .E8B [�1 .E8B

;20# (�0, �1) = h�0 .⇢ \ �1 .⇢, �0 .>?4A |⇢; ,
�0 .AE0; |⇢; , �0 .C8<4 |⇢; , �0 .E8B |⇢; i

In terms of abstract states, 3># simply adds the new event
4 to the set of events, appropriately setting the various event
properties and visibility relation. <4A64# of two abstract
states simply takes a union of the events in the two states.
Similarly, the ;20# of two abstract states would be the inter-
section of events in the two states.

Figure 3 describes the transition function!. The �rst rule
describes the creation of a new branch 12 from the current
branch 11. Both the concrete and abstract states of the new

Our Contributions

• We propose a simulation-based verification procedure for showing
functional correctness and convergence for MRDTs.
• We mechanize and automate the complete verification process using

F*.
• We propose a new, weaker notion of convergence modulo observable

behavior which permits more efficient MRDT implementations.
• We have built a library of efficient and verified MRDTs for common

data structures such as set, map, queue, flag, etc.

Certified Mergeable Replicated Data Types 11

Replication-aware Simulation Relation1

• ℛ!"#(𝐼, 𝜎) relates an abstract state 𝐼 with concrete state 𝜎.
• ℛ567 is the glue relating the concrete and abstract states, as well as the

implementation and specification

• Verification using ℛ!"# is done in two steps:
1. We show that ℛ567 holds in all executions in an inductive fashion.
2. We show that ℛ567 is sufficient to discharge the specification and

convergence requirements.

Certified Mergeable Replicated Data Types 12

1. Burckhardt et. al. Replicated Data Types: Specification, Verification and Optimality. POPL 2014.

Certified Mergeable Replicated Data Types 13

OR-Set MRDT Simulation Relation

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

 CB (�) 84, 4 0 2 � .⇢ . 4
� .E8B���! 4 0) � .C8<4 (4) < � .C8<4 (4 0)

^84, 4 0 2 � .⇢ . � .C8<4 (4) = � .C8<4 (4 0)) 4 = 4 0

 ;20 (�; , �0, �1) �; .E8B = �0 .E8B |�; .⇢ = �1 .E8B |�; .⇢

^84 2 �; .⇢ . 84 0 2 (�0 .⇢ [�1 .⇢) \ �; .⇢ . 4
�0 .E8B[�1 .E8B���������! 4 0

Table 2. Su�cient conditions for showing validity of simulation relation

�3> (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �
0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) RB8< (� 0,f 0)

�<4A64 (RB8<) 8�0, �1,f0,f1,f;20 . RB8< (�0,f0) ^ RB8< (�1,f1)
^ RB8< (;20# (�0, �1),f;20) ^ CB (<4A64# (�0, �1)) ^ ;20 (;20# (�0, �1), �0, �1)

=) RB8< (<4A64# (�0, �1),Dg .<4A64 (f;20,f0,f1))
�B?42 (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �

0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) 0 = Fg (>, �)

�2>= (RB8<) 8� ,f0,f1 . RB8< (� ,f0) ^ RB8< (� ,f1) =) f0 s f1

This corresponds to our proposed notion of convergence
modulo observable behaviour.

De�nition 4.1. Given a MRDT implementation Dg of data
type g , a replication-aware simulation relation RB8< ✓ Ig ⇥⌃
is valid if�3> (RB8<)^�<4A64 (RB8<)^�B?42 (RB8<)^�2>= (RB8<).

Theorem 4.2 (Soundness). Given a MRDT implementation
Dg of data type g , if there exists a valid replication-aware
simulation RB8< , then the data type implementation Dg is
correct 1.

4.2 Verifying OR-sets using simulation relations
Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the speci�cation F>AB4C in
§2.2.1.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

RB8< (� ,f) () (80, C . (0, C) 2 f ()
(94 2 � .⇢ ^ � . >?4A (4) = 033 (0) ^ � .C8<4 (4) = C ^

¬(95 2 � .⇢ ^ � . >?4A (5) = A4<>E4 (0) ^ 4
E8B��! 5)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set speci�cation and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.
1The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.

Space-e�cient OR-set. Following is a candidate valid
simulation relation for the space-e�cient OR-set (OR-set-
space) from §2.1.2:

RB8< ((⇢,>?4A , A E0;, C8<4, E8B),f) ()
(80, C . (0, C) 2 f =) (94 2 ⇢ . >?4A (4) = 033 (0) ^ C8<4 (4) = C)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A)

^(840 2 ⇢ .(>?4A (40) = 033 (0) ^ ¬(9A 2 ⇢ .>?4A (A) = A4<>E4 (0)

^ 40
E8B���! A)) =) C � C8<4 (40))) ^

(84 2 ⇢ .80 2 N. >?4A (4) = 033 (0)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A) =) (0, _) 2 f)

(4)

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs
A key bene�t of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

Certified Mergeable Replicated Data Types 14

1. Verifying operations 2. Verifying merge

Verification using ℛ!"#: Step-1
We show that ℛ!"# holds inductively at every step in every execution

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

4.1 Replication-aware simulation
For proving the correctness of a data type implementation
Dg , we use replication-aware simulation relations RB8< .
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple su�cient conditions which
can easily be discharged by tools such as F*. Finally, we apply
our proof technique to a wide range of MRDTs, with substan-
tially complex speci�cations (e.g. queue MRDT described in
§6).

The RB8< relation essentially associates the concrete state
of the object at a branch 1 with the abstract state at the
branch. This abstract state would consist of all events which
were applied to the branch. Verifying the correctness of an
MRDT through simulation relations involves two steps: (i)
�rst, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type speci�cation and is su�cient for convergence. The
�rst step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in �gures 4 and 5, respectively.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying operations

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>

D� .merge(�lca, �a, �b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 5. Verifying 3-way merge

Figure 4 considers the application of a data type operation
(through the 3> function) at a branch. Assuming that the
simulation relation RB8< holds between the abstract state
� and the concrete state f at the branch, we would have
to show that RB8< continues to hold after the application
of the operation through the concrete 3> function of the

implementation and the abstract 3># function on the abstract
state.
Figure 5 considers the application of a merge operation

between branches 0 and 1. In this case, assuming RB8< be-
tween the abstract and concrete states at the two branches
and for the LCA, we would then show that RB8< continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state f;20 , we also assume that
RB8< holds between the concrete and abstract LCA states.
These conditions consider the e�ect of concrete and ab-

stract operations locally and thus enable automated veri-
�cation. To discharge these conditions, we also consider
two store properties, CB and ;20 that hold across all ex-
ecutions (shown in Table 1). CB pertains to the nature of
the timestamps associated with each operation, while ;20
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role in
discharging the conditions required for the validity of the
simulation relation.
In particular, CB (�) asserts that in the abstract state � ,

causally related events have increasing timestamps, and no
two events have the same timestamp. ;20 (�; , �0, �1) will be
instantiated with the LCA of two abstract states �0 and �1
(i.e. �; = ;20# (�0, �1)), and asserts that the visibility relation
between events which are present in both �0 and �1 (and
hence also in �;) will be the same in all three abstract states.
Further, every event in the LCAwill be visible to newly added
events in either of the two branches. These properties follow
naturally from the de�nition of LCA and are also maintained
by the store semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationRB8< . In particular,�3> and
�<4A64 exactly encode the scenarios depicted in the �gures 4
and 5. Note that for �3> , we assume CB for the input abstract
state on which the operation will be performed. Similarly, for
�<4A64 , we assume CB for all events in the merged abstract
state (thus ensuring CB also holds for events in the original
branches) and ;20 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
speci�cation as well as guarantee convergence. For this, we
de�ne two more conditions �B?42 and �2>= (also in table 2).
�B?42 says that if abstract state � and concrete state f are re-
lated byRB8< , then the return value of operation > performed
on f should match the value of the speci�cation function Fg
on the abstract state. Since the RB8< relation is maintained
at every transition, if �B?42 is valid, then the implementation
will satisfy the speci�cation. Finally, for convergence, we
require that if two concrete states are related to the same ab-
stract state, then they should be observationally equivalent.

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

4.1 Replication-aware simulation
For proving the correctness of a data type implementation
Dg , we use replication-aware simulation relations RB8< .
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple su�cient conditions which
can easily be discharged by tools such as F*. Finally, we apply
our proof technique to a wide range of MRDTs, with substan-
tially complex speci�cations (e.g. queue MRDT described in
§6).

The RB8< relation essentially associates the concrete state
of the object at a branch 1 with the abstract state at the
branch. This abstract state would consist of all events which
were applied to the branch. Verifying the correctness of an
MRDT through simulation relations involves two steps: (i)
�rst, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type speci�cation and is su�cient for convergence. The
�rst step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in �gures 4 and 5, respectively.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying operations

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>

D� .merge(�lca, �a, �b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 5. Verifying 3-way merge

Figure 4 considers the application of a data type operation
(through the 3> function) at a branch. Assuming that the
simulation relation RB8< holds between the abstract state
� and the concrete state f at the branch, we would have
to show that RB8< continues to hold after the application
of the operation through the concrete 3> function of the

implementation and the abstract 3># function on the abstract
state.
Figure 5 considers the application of a merge operation

between branches 0 and 1. In this case, assuming RB8< be-
tween the abstract and concrete states at the two branches
and for the LCA, we would then show that RB8< continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state f;20 , we also assume that
RB8< holds between the concrete and abstract LCA states.
These conditions consider the e�ect of concrete and ab-

stract operations locally and thus enable automated veri-
�cation. To discharge these conditions, we also consider
two store properties, CB and ;20 that hold across all ex-
ecutions (shown in Table 1). CB pertains to the nature of
the timestamps associated with each operation, while ;20
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role in
discharging the conditions required for the validity of the
simulation relation.
In particular, CB (�) asserts that in the abstract state � ,

causally related events have increasing timestamps, and no
two events have the same timestamp. ;20 (�; , �0, �1) will be
instantiated with the LCA of two abstract states �0 and �1
(i.e. �; = ;20# (�0, �1)), and asserts that the visibility relation
between events which are present in both �0 and �1 (and
hence also in �;) will be the same in all three abstract states.
Further, every event in the LCAwill be visible to newly added
events in either of the two branches. These properties follow
naturally from the de�nition of LCA and are also maintained
by the store semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationRB8< . In particular,�3> and
�<4A64 exactly encode the scenarios depicted in the �gures 4
and 5. Note that for �3> , we assume CB for the input abstract
state on which the operation will be performed. Similarly, for
�<4A64 , we assume CB for all events in the merged abstract
state (thus ensuring CB also holds for events in the original
branches) and ;20 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
speci�cation as well as guarantee convergence. For this, we
de�ne two more conditions �B?42 and �2>= (also in table 2).
�B?42 says that if abstract state � and concrete state f are re-
lated byRB8< , then the return value of operation > performed
on f should match the value of the speci�cation function Fg
on the abstract state. Since the RB8< relation is maintained
at every transition, if �B?42 is valid, then the implementation
will satisfy the speci�cation. Finally, for convergence, we
require that if two concrete states are related to the same ab-
stract state, then they should be observationally equivalent.

Verification using ℛ!"#: Step-2

Certified Mergeable Replicated Data Types 15

We show that ℛ567 is sufficient to prove specification and convergence

𝐼

𝜎

ℱ(𝐼, 𝑜𝑝)

𝑣

𝑟𝑣𝑎𝑙(
𝑑𝑜(𝜎

, 𝑜𝑝))

ℛ#$%

3. Verifying specification

𝐼

𝜎! 𝜎"=

4. Verifying convergence

ℛ#$% ℛ#$%

Store Properties

Certified Mergeable Replicated Data Types 16

Ψ&# asserts increasing timestamps according to the visibility relation

Ψ'() asserts that events in LCA are present in both the branches,
with the same visibility relation

We assume the store properties while proving ℛ_𝑠𝑖𝑚

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

 CB (�) 84, 4 0 2 � .⇢ . 4
� .E8B���! 4 0) � .C8<4 (4) < � .C8<4 (4 0)

^84, 4 0 2 � .⇢ . � .C8<4 (4) = � .C8<4 (4 0)) 4 = 4 0

 ;20 (�; , �0, �1) �; .⇢ = �0 .⇢ \ �1 .⇢
^ �; .E8B = �0 .E8B |�; .⇢ = �1 .E8B |�; .⇢

Table 2. Su�cient conditions for showing validity of simulation relation

�3> (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �
0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) RB8< (� 0,f 0)

�<4A64 (RB8<) 8�0, �1,f0,f1,f;20 . RB8< (�0,f0) ^ RB8< (�1,f1)
^ RB8< (;20# (�0, �1),f;20) ^ CB (<4A64# (�0, �1)) ^ ;20 (;20# (�0, �1), �0, �1)

=) RB8< (<4A64# (�0, �1),Dg .<4A64 (f;20,f0,f1))
�B?42 (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ Dg .3> (>?,f, C) = (f 0

,0)
^ CB (�) =) 0 = Fg (>?, �)

�2>= (RB8<) 8� ,f0,f1 . RB8< (� ,f0) ^ RB8< (� ,f1) =) f0 s f1

De�nition 4.1. Given a MRDT implementation Dg of data
type g , a replication-aware simulation relation RB8< ✓
Ig ⇥ ⌃ is valid if �3> (RB8<) ^�<4A64 (RB8<) ^�B?42 (RB8<) ^
�2>= (RB8<).

Theorem 4.2 (Soundness). Given a MRDT implementation
Dg of data type g , if there exists a valid replication-aware
simulation RB8< , then the data type implementation Dg is
correct 1.

4.2 Verifying OR-sets Using Simulation Relations
Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the speci�cation F>AB4C in
§2.2.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

RB8< (� ,f) () (80, C . (0, C) 2 f ()
(94 2 � .⇢ ^ � . >?4A (4) = 033 (0) ^ � .C8<4 (4) = C ^

¬(95 2 � .⇢ ^ � . >?4A (5) = A4<>E4 (0) ^ 4
E8B��! 5)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set speci�cation and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.

1The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.

Space-e�cient OR-set. Following is a candidate valid
simulation relation for the space-e�cient OR-set (OR-set-
space) from §2.1.2:

RB8< ((⇢,>?4A , A E0;, C8<4, E8B),f) ()
(80, C . (0, C) 2 f =) (94 2 ⇢ . >?4A (4) = 033 (0) ^ C8<4 (4) = C)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A)

^(840 2 ⇢ .(>?4A (40) = 033 (0) ^ ¬(9A 2 ⇢ .>?4A (A) = A4<>E4 (0)

^ 40
E8B���! A)) =) C � C8<4 (40))) ^

(84 2 ⇢ .80 2 N. >?4A (4) = 033 (0)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A) =) (0, _) 2 f)

(4)

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs
A key bene�t of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

Certified Mergeable Replicated Data Types 17

[(a,1)]

[(a,1); (b,2)]

add b

A

add a

[]

Example: Verifying ℛ!"# for OR-Set MRDT

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

4.1 Replication-aware simulation
For proving the correctness of a data type implementation
Dg , we use replication-aware simulation relations RB8< .
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple su�cient conditions which
can easily be discharged by tools such as F*. Finally, we apply
our proof technique to a wide range of MRDTs, with substan-
tially complex speci�cations (e.g. queue MRDT described in
§6).

The RB8< relation essentially associates the concrete state
of the object at a branch 1 with the abstract state at the
branch. This abstract state would consist of all events which
were applied to the branch. Verifying the correctness of an
MRDT through simulation relations involves two steps: (i)
�rst, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type speci�cation and is su�cient for convergence. The
�rst step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in �gures 4 and 5, respectively.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying operations

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>

D� .merge(�lca, �a, �b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 5. Verifying 3-way merge

Figure 4 considers the application of a data type operation
(through the 3> function) at a branch. Assuming that the
simulation relation RB8< holds between the abstract state
� and the concrete state f at the branch, we would have
to show that RB8< continues to hold after the application
of the operation through the concrete 3> function of the

implementation and the abstract 3># function on the abstract
state.
Figure 5 considers the application of a merge operation

between branches 0 and 1. In this case, assuming RB8< be-
tween the abstract and concrete states at the two branches
and for the LCA, we would then show that RB8< continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state f;20 , we also assume that
RB8< holds between the concrete and abstract LCA states.
These conditions consider the e�ect of concrete and ab-

stract operations locally and thus enable automated veri-
�cation. To discharge these conditions, we also consider
two store properties, CB and ;20 that hold across all ex-
ecutions (shown in Table 1). CB pertains to the nature of
the timestamps associated with each operation, while ;20
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role in
discharging the conditions required for the validity of the
simulation relation.
In particular, CB (�) asserts that in the abstract state � ,

causally related events have increasing timestamps, and no
two events have the same timestamp. ;20 (�; , �0, �1) will be
instantiated with the LCA of two abstract states �0 and �1
(i.e. �; = ;20# (�0, �1)), and asserts that the visibility relation
between events which are present in both �0 and �1 (and
hence also in �;) will be the same in all three abstract states.
Further, every event in the LCAwill be visible to newly added
events in either of the two branches. These properties follow
naturally from the de�nition of LCA and are also maintained
by the store semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationRB8< . In particular,�3> and
�<4A64 exactly encode the scenarios depicted in the �gures 4
and 5. Note that for �3> , we assume CB for the input abstract
state on which the operation will be performed. Similarly, for
�<4A64 , we assume CB for all events in the merged abstract
state (thus ensuring CB also holds for events in the original
branches) and ;20 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
speci�cation as well as guarantee convergence. For this, we
de�ne two more conditions �B?42 and �2>= (also in table 2).
�B?42 says that if abstract state � and concrete state f are re-
lated byRB8< , then the return value of operation > performed
on f should match the value of the speci�cation function Fg
on the abstract state. Since the RB8< relation is maintained
at every transition, if �B?42 is valid, then the implementation
will satisfy the speci�cation. Finally, for convergence, we
require that if two concrete states are related to the same ab-
stract state, then they should be observationally equivalent.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

 CB (�) 84, 4 0 2 � .⇢ . 4
� .E8B���! 4 0) � .C8<4 (4) < � .C8<4 (4 0)

^84, 4 0 2 � .⇢ . � .C8<4 (4) = � .C8<4 (4 0)) 4 = 4 0

 ;20 (�; , �0, �1) �; .E8B = �0 .E8B |�; .⇢ = �1 .E8B |�; .⇢

^84 2 �; .⇢ . 84 0 2 (�0 .⇢ [�1 .⇢) \ �; .⇢ . 4
�0 .E8B[�1 .E8B���������! 4 0

Table 2. Su�cient conditions for showing validity of simulation relation

�3> (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �
0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) RB8< (� 0,f 0)

�<4A64 (RB8<) 8�0, �1,f0,f1,f;20 . RB8< (�0,f0) ^ RB8< (�1,f1)
^ RB8< (;20# (�0, �1),f;20) ^ CB (<4A64# (�0, �1)) ^ ;20 (;20# (�0, �1), �0, �1)

=) RB8< (<4A64# (�0, �1),Dg .<4A64 (f;20,f0,f1))
�B?42 (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �

0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) 0 = Fg (>, �)

�2>= (RB8<) 8� ,f0,f1 . RB8< (� ,f0) ^ RB8< (� ,f1) =) f0 s f1

This corresponds to our proposed notion of convergence
modulo observable behaviour.

De�nition 4.1. Given a MRDT implementation Dg of data
type g , a replication-aware simulation relation RB8< ✓ Ig ⇥⌃
is valid if�3> (RB8<)^�<4A64 (RB8<)^�B?42 (RB8<)^�2>= (RB8<).

Theorem 4.2 (Soundness). Given a MRDT implementation
Dg of data type g , if there exists a valid replication-aware
simulation RB8< , then the data type implementation Dg is
correct 1.

4.2 Verifying OR-sets using simulation relations
Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the speci�cation F>AB4C in
§2.2.1.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

RB8< (� ,f) () (80, C . (0, C) 2 f ()
(94 2 � .⇢ ^ � . >?4A (4) = 033 (0) ^ � .C8<4 (4) = C ^

¬(95 2 � .⇢ ^ � . >?4A (5) = A4<>E4 (0) ^ 4
E8B��! 5)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set speci�cation and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.
1The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.

Space-e�cient OR-set. Following is a candidate valid
simulation relation for the space-e�cient OR-set (OR-set-
space) from §2.1.2:

RB8< ((⇢,>?4A , A E0;, C8<4, E8B),f) ()
(80, C . (0, C) 2 f =) (94 2 ⇢ . >?4A (4) = 033 (0) ^ C8<4 (4) = C)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A)

^(840 2 ⇢ .(>?4A (40) = 033 (0) ^ ¬(9A 2 ⇢ .>?4A (A) = A4<>E4 (0)

^ 40
E8B���! A)) =) C � C8<4 (40))) ^

(84 2 ⇢ .80 2 N. >?4A (4) = 033 (0)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A) =) (0, _) 2 f)

(4)

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs
A key bene�t of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

Simulation Relation:

Certified Mergeable Replicated Data Types 18

[(a,1)]

[(a,1); (b,2)] []

[(b,2)]

add b rem a

A B

add a

[]

LCA

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

4.1 Replication-aware simulation
For proving the correctness of a data type implementation
Dg , we use replication-aware simulation relations RB8< .
While similar to the simulation relations used in Burckhardt
et al. [5], in this work, we apply them to MRDTs rather than
CRDTs. Further, we also mechanize and automate simulation-
based proofs by deriving simple su�cient conditions which
can easily be discharged by tools such as F*. Finally, we apply
our proof technique to a wide range of MRDTs, with substan-
tially complex speci�cations (e.g. queue MRDT described in
§6).

The RB8< relation essentially associates the concrete state
of the object at a branch 1 with the abstract state at the
branch. This abstract state would consist of all events which
were applied to the branch. Verifying the correctness of an
MRDT through simulation relations involves two steps: (i)
�rst, we show that the simulation relation holds at every
transition in every execution of the replicated store, and
(ii) the simulation relation meets the requirements of the
data type speci�cation and is su�cient for convergence. The
�rst step is essentially an inductive argument, for which
we require the simulation relation between the abstract and
concrete states to hold for every data type operation instance
and merge instance. These two steps are depicted pictorially
in �gures 4 and 5, respectively.

<latexit sha1_base64="WfvSPo/E0SFV3qx64IrolUJ9j+Y=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIVdEbURgzbaJWAukCxhdnI2GTM7u8zMCiHkCWwsFLHVh7G3Ed/GyaXQxB8GPv7/HOacEyScKe2631ZmYXFpeSW7aq+tb2xu5bZ3qipOJcUKjXks6wFRyJnAimaaYz2RSKKAYy3oXY3y2j1KxWJxq/sJ+hHpCBYySrSxyjetXN4tuGM58+BNIX/xYZ8n7192qZX7bLZjmkYoNOVEqYbnJtofEKkZ5Ti0m6nChNAe6WDDoCARKn8wHnToHBin7YSxNE9oZ+z+7hiQSKl+FJjKiOiums1G5n9ZI9XhmT9gIkk1Cjr5KEy5o2NntLXTZhKp5n0DhEpmZnVol0hCtbmNbY7gza48D9WjgndSOC67+eIlTJSFPdiHQ/DgFIpwDSWoAAWEB3iCZ+vOerRerNdJacaa9uzCH1lvPwGBkBM=</latexit>

I
<latexit sha1_base64="kY9uENEuWhc5qi8PNwWK3nsXmfQ=">AAAB7HicbZDLSsNAFIZP6q3GW9Wlm8EiuiqJiLoRi250V8G0hTaWyXTSDp1MwsxEKKHP4MaFIq4EX8W9G/FtnF4W2vrDwMf/n8Occ4KEM6Ud59vKzc0vLC7ll+2V1bX1jcLmVlXFqSTUIzGPZT3AinImqKeZ5rSeSIqjgNNa0Lsc5rV7KhWLxa3uJ9SPcEewkBGsjeVd32X7g1ah6JSckdAsuBMonn/YZ8nbl11pFT6b7ZikERWacKxUw3US7WdYakY4HdjNVNEEkx7u0IZBgSOq/Gw07ADtGaeNwliaJzQaub87Mhwp1Y8CUxlh3VXT2dD8L2ukOjz1MyaSVFNBxh+FKUc6RsPNUZtJSjTvG8BEMjMrIl0sMdHmPrY5gju98ixUD0vucenoximWL2CsPOzALhyACydQhiuogAcEGDzAEzxbwnq0XqzXcWnOmvRswx9Z7z/aCpG4</latexit>

I
0

<latexit sha1_base64="NEvPvrvMkTnDWMsO4OmG3WtPrug=">AAAB7XicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRNSNWHTjsoK9QDuUTJppY5PMkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTphwpo3nfTu5hcWl5ZX8qru2vrG5Vdjeqek4VYRWScxj1QixppxJWjXMcNpIFMUi5LQe9q9Gef2eKs1ieWsGCQ0E7koWMYKNtWotzboCtwtFr+SNhebBn0Lx4sM9T96+3Eq78NnqxCQVVBrCsdZN30tMkGFlGOF06LZSTRNM+rhLmxYlFlQH2XjaITqwTgdFsbJPGjR2f3dkWGg9EKGtFNj09Gw2Mv/LmqmJzoKMySQ1VJLJR1HKkYnRaHXUYYoSwwcWMFHMzopIDytMjD2Qa4/gz648D7Wjkn9SOr7xiuVLmCgPe7APh+DDKZThGipQBQJ38ABP8OzEzqPz4rxOSnPOtGcX/sh5/wH+1JJp</latexit>�
<latexit sha1_base64="u2K3alyR93V5Tsyk5XbAla307eA=">AAAB8XicbZDLSgMxFIbP1Fsdb1WXboJFdFVmRNSNWHTjsoK9YDuWTJq2oUlmSDJCGfoWblwooksfxL0b8W1MLwtt/SHw8f/nkHNOGHOmjed9O5m5+YXFpeyyu7K6tr6R29yq6ChRhJZJxCNVC7GmnElaNsxwWosVxSLktBr2Lod59Z4qzSJ5Y/oxDQTuSNZmBBtr3TY06wh8l+4Pmrm8V/BGQrPgTyB//uGexW9fbqmZ+2y0IpIIKg3hWOu678UmSLEyjHA6cBuJpjEmPdyhdYsSC6qDdDTxAO1Zp4XakbJPGjRyf3ekWGjdF6GtFNh09XQ2NP/L6olpnwYpk3FiqCTjj9oJRyZCw/VRiylKDO9bwEQxOysiXawwMfZIrj2CP73yLFQOC/5x4ejayxcvYKws7MAuHIAPJ1CEKyhBGQhIeIAneHa08+i8OK/j0owz6dmGP3LefwDgJJQO</latexit>

�
0

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="eqvudulUp1aAWZ+2Hc2XfkMtrE4=">AAAB7nicbZDLSgMxFIYz9VbHW9Wlm+AguCozIupGLLpxWcFeoB1LJpNpQzNJSDJCGfoQblwo4sKNb+Lejfg2ppeFtv4Q+Pj/c8g5J5KMauP7305hYXFpeaW46q6tb2xulbZ36lpkCpMaFkyoZoQ0YZSTmqGGkaZUBKURI42ofzXKG/dEaSr4rRlIEqaoy2lCMTLWasTiLm97w07J88v+WHAegil4Fx/uuXz7cqud0mc7FjhLCTeYIa1bgS9NmCNlKGZk6LYzTSTCfdQlLYscpUSH+XjcITywTgwToezjBo7d3x05SrUepJGtTJHp6dlsZP6XtTKTnIU55TIzhOPJR0nGoBFwtDuMqSLYsIEFhBW1s0LcQwphYy/k2iMEsyvPQ/2oHJyUj298r3IJJiqCPbAPDkEATkEFXIMqqAEM+uABPIFnRzqPzovzOiktONOeXfBHzvsPf3aSrg==</latexit>

do#

<latexit sha1_base64="GJ8Hfqg4PT1djgXqttrSR0sa+kU=">AAAB/nicbVDLSsNAFJ34rPUVFd24GSyCq5CIqMtSXbhswT6gCWEymbRDJ5MwMxFKKPgrblwoxa0f4Be4c+O3OGm70NYDA4dz7uWeOUHKqFS2/WUsLa+srq2XNsqbW9s7u+befksmmcCkiROWiE6AJGGUk6aiipFOKgiKA0baweCm8NsPREia8Hs1TIkXox6nEcVIack3D90YqT5GLL8d+bmrUDaywsQ3K7ZlTwAXiTMjlepR45uOax913/x0wwRnMeEKMyRl17FT5eVIKIoZGZXdTJIU4QHqka6mHMVEevkk/gieaiWEUSL04wpO1N8bOYqlHMaBnizCynmvEP/zupmKrr2c8jRThOPpoShjUCWw6AKGVBCs2FAThAXVWSHuI4Gw0o2VdQnO/JcXSevcci6ti4ZuowamKIFjcALOgAOuQBXcgTpoAgxy8ARewKvxaDwbY+NtOrpkzHYOwB8Y7z+NK5mT</latexit>

D⌧ .do

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 4. Verifying operations

<latexit sha1_base64="Dy/2m4Wme25ZUqS0Ppa4DBl/fiA=">AAAB7nicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GeNFbAuYBSQi9k9lkyOzsMjMrhCUf4cWDIl69+Bd+gTcvfouTx0ETCxqKqm66u/xYcG1c98tZWl5ZXVvPbGQ3t7Z3dnN7+zUdJYqyKo1EpBo+aia4ZFXDjWCNWDEMfcHq/uB67NfvmdI8kndmGLN2iD3JA07RWKl+20kFxVEnl3cL7gRkkXgzki8eVr75e+mj3Ml9troRTUImDRWoddNzY9NOURlOBRtlW4lmMdIB9ljTUokh0+10cu6InFilS4JI2ZKGTNTfEymGWg9D33aGaPp63huL/3nNxARX7ZTLODFM0umiIBHERGT8O+lyxagRQ0uQKm5vJbSPCqmxCWVtCN78y4ukdlbwLgrnFZtGCabIwBEcwyl4cAlFuIEyVIHCAB7gCZ6d2Hl0XpzXaeuSM5s5gD9w3n4AOtiTNg==</latexit>

Ilca

<latexit sha1_base64="0LdWn8vsU5WpWScCLgVwTATdjYU=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScjo06h6JScCfAicWekWD6sffP3yke1U/hsd2OaRkwaKojWLddJjJ8RZTgVbJRvp5olhA5Ij7UslSRi2s8mx47wiVW6OIyVLWnwRP09kZFI62EU2M6ImL6e98bif14rNeGVn3GZpIZJOl0UpgKbGI8/x12uGDViaAmhittbMe0TRaix+eRtCO78y4ukflZyL0rnNZtGBabIwREcwym4cAlluIEqeECBwwM8wTOS6BG9oNdp6xKazRzAH6C3H7LUklM=</latexit>

Ia
<latexit sha1_base64="HBKu1q0Rf9txQDVSNS24QtWFLgc=">AAAB7HicbVC7SgNBFL3jM8ZXVLCxGQyCVdgVUcsQG+0ScJNAsoTZyWwyZHZ2mZkVwpJvsLFQxNbOv/AL7Gz8FiePQhMPXDiccy/33hMkgmvjOF9oaXlldW09t5Hf3Nre2S3s7dd1nCrKPBqLWDUDopngknmGG8GaiWIkCgRrBIPrsd+4Z0rzWN6ZYcL8iPQkDzklxkrebScLRp1C0Sk5E+BF4s5IsXxY++bvlY9qp/DZ7sY0jZg0VBCtW66TGD8jynAq2CjfTjVLCB2QHmtZKknEtJ9Njh3hE6t0cRgrW9Lgifp7IiOR1sMosJ0RMX09743F/7xWasIrP+MySQ2TdLooTAU2MR5/jrtcMWrE0BJCFbe3YtonilBj88nbENz5lxdJ/azkXpTOazaNCkyRgyM4hlNw4RLKcANV8IAChwd4gmck0SN6Qa/T1iU0mzmAP0BvP7RZklQ=</latexit>

Ib

<latexit sha1_base64="BfeDE2EoEXsbylTaab80jHXAl0c=">AAACAnicbVDLSgMxFM3UV62vUVfiJrQIFaXMiKjLohvdVbAPaMchk962oZkHSUYow+DGT/AX3LhQxK1f4a5/Y/pYaOuByz2ccy/JPV7EmVSWNTQyC4tLyyvZ1dza+sbmlrm9U5NhLChUachD0fCIBM4CqCqmODQiAcT3ONS9/tXIrz+AkCwM7tQgAscn3YB1GCVKS66554Pown3SKqS4eOMmJD3GunnpoWsWrJI1Bp4n9pQUyvnW0fOwPKi45nerHdLYh0BRTqRs2laknIQIxSiHNNeKJUSE9kkXmpoGxAfpJOMTUnyglTbuhEJXoPBY/b2REF/Kge/pSZ+onpz1RuJ/XjNWnQsnYUEUKwjo5KFOzLEK8SgP3GYCqOIDTQgVTP8V0x4RhCqdWk6HYM+ePE9qJyX7rHR6q9O4RBNk0T7KoyKy0Tkqo2tUQVVE0SN6QW/o3XgyXo0P43MymjGmO7voD4yvH8UamV4=</latexit>

merge#(Ia, Ib)

<latexit sha1_base64="y+vKe9qLG4+BL9ex1OOHCslzrZo=">AAACJnicbVDLSgMxFM34tr5GXboJiqAoZUZE3QhFXbhUsK3QKcOd9LYGk5khyQhlmL/wD9z4K25cVES681NMWwVfBwIn59xLck6UCq6N5/WdsfGJyanpmdnS3PzC4pK7vFLTSaYYVlkiEnUdgUbBY6wabgRepwpBRgLr0e3pwK/fodI8ia9MN8WmhE7M25yBsVLoHgcSzA0DkZ8VYR4YyIqyRNVBuhVo3pEQ5oJBsft1+UajYjt0N7yyNwT9S/xPslFZD3bu+5XuRej2glbCMomxYQK0bvheapo5KMOZwKIUZBpTYLfQwYalMUjUzXwYs6CbVmnRdqLsiQ0dqt83cpBad2VkJweh9G9vIP7nNTLTPmrmPE4zgzEbPdTOBDUJHXRGW1whM6JrCTDF7V8puwEFzNhmS7YE/3fkv6S2V/YPyvuXto0TMsIMWSPrZIv45JBUyDm5IFXCyAN5Ij3y4jw6z86r8zYaHXM+d1bJDzjvHzu/qdY=</latexit>

D� .merge(�lca, �a, �b)

<latexit sha1_base64="I7APEryertJNM+87oD5OYKaqUFo=">AAAB8XicbVDLSgNBEOz1GeMrKnjxMhgET2FXRD2GePGYgHlgEkLvZDYZMju7zMwKYclfePGgiFfxL/wCb178FiePgyYWNBRV3XR3+bHg2rjul7O0vLK6tp7ZyG5ube/s5vb2azpKFGVVGolINXzUTHDJqoYbwRqxYhj6gtX9wfXYr98zpXkkb80wZu0Qe5IHnKKx0l1L816InRRHnVzeLbgTkEXizUi+eFj55u+lj3In99nqRjQJmTRUoNZNz41NO0VlOBVslG0lmsVIB9hjTUslhky308nFI3JilS4JImVLGjJRf0+kGGo9DH3bGaLp63lvLP7nNRMTXLVTLuPEMEmni4JEEBOR8fukyxWjRgwtQaq4vZXQPiqkxoaUtSF48y8vktpZwbsonFdsGiWYIgNHcAyn4MElFOEGylAFChIe4AmeHe08Oi/O67R1yZnNHMAfOG8/uO6UqQ==</latexit>�a
<latexit sha1_base64="ykCG9DkxGVkogyb+//Vbz73Ko2M=">AAAB8XicbVDLSgNBEOyNrxhfUcGLl8EgeAq7EtRjiBePCZgHJkuYncwmQ2Zml5lZISz5Cy8eFPEq/oVf4M2L3+LkcdDEgoaiqpvuriDmTBvX/XIyK6tr6xvZzdzW9s7uXn7/oKGjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLye+M17qjSL5K0ZxdQXuC9ZyAg2VrrraNYXuJsG426+4BbdKdAy8eakUD6qfbP3yke1m//s9CKSCCoN4VjrtufGxk+xMoxwOs51Ek1jTIa4T9uWSiyo9tPpxWN0apUeCiNlSxo0VX9PpFhoPRKB7RTYDPSiNxH/89qJCa/8lMk4MVSS2aIw4chEaPI+6jFFieEjSzBRzN6KyAArTIwNKWdD8BZfXiaN86J3USzVbBoVmCELx3ACZ+DBJZThBqpQBwISHuAJnh3tPDovzuusNePMZw7hD5y3H7pzlKo=</latexit>�b

<latexit sha1_base64="capf+EiaPW6bN91cOyWHmH5XC8Q=">AAAB83icbVDLSgNBEJyNrxhfUcGLl8EgeAq7IuoxxIvHBMwDskvoncwmQ2Zml5lZISz5DS8eFPGav/ALvHnxW5w8DppY0FBUddPdFSacaeO6X05ubX1jcyu/XdjZ3ds/KB4eNXWcKkIbJOaxaoegKWeSNgwznLYTRUGEnLbC4d3Ubz1SpVksH8wooYGAvmQRI2Cs5Pua9QV0M05g3C2W3LI7A14l3oKUKif1bzapftS6xU+/F5NUUGkIB607npuYIANlGOF0XPBTTRMgQ+jTjqUSBNVBNrt5jM+t0sNRrGxJg2fq74kMhNYjEdpOAWagl72p+J/XSU10G2RMJqmhkswXRSnHJsbTAHCPKUoMH1kCRDF7KyYDUECMjalgQ/CWX14lzcuyd12+qts0qmiOPDpFZ+gCeegGVdA9qqEGIihBT+gFvTqp8+y8Oe/z1pyzmDlGf+BMfgBFTpWM</latexit>�lca

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim
<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

<latexit sha1_base64="JziOxGpInL6Kij3sfu9kU2Nijuc=">AAAB+nicbVDLSgMxFM3UV62vqYIbN8EiuCozIuqy1I3LVuwD2mHIpJk2NMkMSUYpYz/FjQtFxJ2f4Be4c+O3mGm70NYDgcM593JPThAzqrTjfFm5peWV1bX8emFjc2t7xy7uNlWUSEwaOGKRbAdIEUYFaWiqGWnHkiAeMNIKhpeZ37olUtFI3OhRTDyO+oKGFCNtJN8udjnSA4xYej32U0X52LdLTtmZAC4Sd0ZKlf36N32rftR8+7Pbi3DCidCYIaU6rhNrL0VSU8zIuNBNFIkRHqI+6RgqECfKSyfRx/DIKD0YRtI8oeFE/b2RIq7UiAdmMguq5r1M/M/rJDq88FIq4kQTgaeHwoRBHcGsB9ijkmDNRoYgLKnJCvEASYS1aatgSnDnv7xImidl96x8WjdtVMEUeXAADsExcME5qIArUAMNgMEdeABP4Nm6tx6tF+t1OpqzZjt74A+s9x/dxJgb</latexit>

Rsim

Figure 5. Verifying 3-way merge

Figure 4 considers the application of a data type operation
(through the 3> function) at a branch. Assuming that the
simulation relation RB8< holds between the abstract state
� and the concrete state f at the branch, we would have
to show that RB8< continues to hold after the application
of the operation through the concrete 3> function of the

implementation and the abstract 3># function on the abstract
state.
Figure 5 considers the application of a merge operation

between branches 0 and 1. In this case, assuming RB8< be-
tween the abstract and concrete states at the two branches
and for the LCA, we would then show that RB8< continues
to hold between the concrete and abstract states obtained
after merge. Note that since the concrete merge operation
also uses the concrete LCA state f;20 , we also assume that
RB8< holds between the concrete and abstract LCA states.
These conditions consider the e�ect of concrete and ab-

stract operations locally and thus enable automated veri-
�cation. To discharge these conditions, we also consider
two store properties, CB and ;20 that hold across all ex-
ecutions (shown in Table 1). CB pertains to the nature of
the timestamps associated with each operation, while ;20
characterizes the lowest common ancestor used for merge.
These properties hold naturally due to the semantics of the
replicated store. These properties play an important role in
discharging the conditions required for the validity of the
simulation relation.
In particular, CB (�) asserts that in the abstract state � ,

causally related events have increasing timestamps, and no
two events have the same timestamp. ;20 (�; , �0, �1) will be
instantiated with the LCA of two abstract states �0 and �1
(i.e. �; = ;20# (�0, �1)), and asserts that the visibility relation
between events which are present in both �0 and �1 (and
hence also in �;) will be the same in all three abstract states.
Further, every event in the LCAwill be visible to newly added
events in either of the two branches. These properties follow
naturally from the de�nition of LCA and are also maintained
by the store semantics.
Table 2 shows the conditions required for proving the

validity of the simulation relationRB8< . In particular,�3> and
�<4A64 exactly encode the scenarios depicted in the �gures 4
and 5. Note that for �3> , we assume CB for the input abstract
state on which the operation will be performed. Similarly, for
�<4A64 , we assume CB for all events in the merged abstract
state (thus ensuring CB also holds for events in the original
branches) and ;20 for the LCA of the abstract states.

Once we show that the simulation relation is maintained
at every transition in every execution inductively, we also
have to show that it is strong enough to imply the data type
speci�cation as well as guarantee convergence. For this, we
de�ne two more conditions �B?42 and �2>= (also in table 2).
�B?42 says that if abstract state � and concrete state f are re-
lated byRB8< , then the return value of operation > performed
on f should match the value of the speci�cation function Fg
on the abstract state. Since the RB8< relation is maintained
at every transition, if �B?42 is valid, then the implementation
will satisfy the speci�cation. Finally, for convergence, we
require that if two concrete states are related to the same ab-
stract state, then they should be observationally equivalent.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

 CB (�) 84, 4 0 2 � .⇢ . 4
� .E8B���! 4 0) � .C8<4 (4) < � .C8<4 (4 0)

^84, 4 0 2 � .⇢ . � .C8<4 (4) = � .C8<4 (4 0)) 4 = 4 0

 ;20 (�; , �0, �1) �; .E8B = �0 .E8B |�; .⇢ = �1 .E8B |�; .⇢

^84 2 �; .⇢ . 84 0 2 (�0 .⇢ [�1 .⇢) \ �; .⇢ . 4
�0 .E8B[�1 .E8B���������! 4 0

Table 2. Su�cient conditions for showing validity of simulation relation

�3> (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �
0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) RB8< (� 0,f 0)

�<4A64 (RB8<) 8�0, �1,f0,f1,f;20 . RB8< (�0,f0) ^ RB8< (�1,f1)
^ RB8< (;20# (�0, �1),f;20) ^ CB (<4A64# (�0, �1)) ^ ;20 (;20# (�0, �1), �0, �1)

=) RB8< (<4A64# (�0, �1),Dg .<4A64 (f;20,f0,f1))
�B?42 (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �

0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) 0 = Fg (>, �)

�2>= (RB8<) 8� ,f0,f1 . RB8< (� ,f0) ^ RB8< (� ,f1) =) f0 s f1

This corresponds to our proposed notion of convergence
modulo observable behaviour.

De�nition 4.1. Given a MRDT implementation Dg of data
type g , a replication-aware simulation relation RB8< ✓ Ig ⇥⌃
is valid if�3> (RB8<)^�<4A64 (RB8<)^�B?42 (RB8<)^�2>= (RB8<).

Theorem 4.2 (Soundness). Given a MRDT implementation
Dg of data type g , if there exists a valid replication-aware
simulation RB8< , then the data type implementation Dg is
correct 1.

4.2 Verifying OR-sets using simulation relations
Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the speci�cation F>AB4C in
§2.2.1.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

RB8< (� ,f) () (80, C . (0, C) 2 f ()
(94 2 � .⇢ ^ � . >?4A (4) = 033 (0) ^ � .C8<4 (4) = C ^

¬(95 2 � .⇢ ^ � . >?4A (5) = A4<>E4 (0) ^ 4
E8B��! 5)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set speci�cation and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.
1The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.

Space-e�cient OR-set. Following is a candidate valid
simulation relation for the space-e�cient OR-set (OR-set-
space) from §2.1.2:

RB8< ((⇢,>?4A , A E0;, C8<4, E8B),f) ()
(80, C . (0, C) 2 f =) (94 2 ⇢ . >?4A (4) = 033 (0) ^ C8<4 (4) = C)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A)

^(840 2 ⇢ .(>?4A (40) = 033 (0) ^ ¬(9A 2 ⇢ .>?4A (A) = A4<>E4 (0)

^ 40
E8B���! A)) =) C � C8<4 (40))) ^

(84 2 ⇢ .80 2 N. >?4A (4) = 033 (0)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A) =) (0, _) 2 f)

(4)

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs
A key bene�t of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

Simulation Relation:

Store Property:

Example: Verifying ℛ!"# for OR-Set MRDT

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vimala Soundarapandian, Adharsh Kamath, Kartik Nagar, and KC Sivaramakrishnan

Table 1. Store properties

 CB (�) 84, 4 0 2 � .⇢ . 4
� .E8B���! 4 0) � .C8<4 (4) < � .C8<4 (4 0)

^84, 4 0 2 � .⇢ . � .C8<4 (4) = � .C8<4 (4 0)) 4 = 4 0

 ;20 (�; , �0, �1) �; .⇢ = �0 .⇢ \ �1 .⇢
^ �; .E8B = �0 .E8B |�; .⇢ = �1 .E8B |�; .⇢

Table 2. Su�cient conditions for showing validity of simulation relation

�3> (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ 3># (� , 4,>?,0, C) = �
0

^ Dg .3> (>?,f, C) = (f 0
,0) ^ CB (�) =) RB8< (� 0,f 0)

�<4A64 (RB8<) 8�0, �1,f0,f1,f;20 . RB8< (�0,f0) ^ RB8< (�1,f1)
^ RB8< (;20# (�0, �1),f;20) ^ CB (<4A64# (�0, �1)) ^ ;20 (;20# (�0, �1), �0, �1)

=) RB8< (<4A64# (�0, �1),Dg .<4A64 (f;20,f0,f1))
�B?42 (RB8<) 8� ,f, 4,>?,0, C . RB8< (� ,f) ^ Dg .3> (>?,f, C) = (f 0

,0)
^ CB (�) =) 0 = Fg (>?, �)

�2>= (RB8<) 8� ,f0,f1 . RB8< (� ,f0) ^ RB8< (� ,f1) =) f0 s f1

De�nition 4.1. Given a MRDT implementation Dg of data
type g , a replication-aware simulation relation RB8< ✓
Ig ⇥ ⌃ is valid if �3> (RB8<) ^�<4A64 (RB8<) ^�B?42 (RB8<) ^
�2>= (RB8<).

Theorem 4.2 (Soundness). Given a MRDT implementation
Dg of data type g , if there exists a valid replication-aware
simulation RB8< , then the data type implementation Dg is
correct 1.

4.2 Verifying OR-sets Using Simulation Relations
Let us look at the simulation relations for verifying OR-set
implementations in §2.1 against the speci�cation F>AB4C in
§2.2.

OR-set. Following is a candidate valid simulation relation
for the unoptimized OR-set from §2.1.1:

RB8< (� ,f) () (80, C . (0, C) 2 f ()
(94 2 � .⇢ ^ � . >?4A (4) = 033 (0) ^ � .C8<4 (4) = C ^

¬(95 2 � .⇢ ^ � . >?4A (5) = A4<>E4 (0) ^ 4
E8B��! 5)))

(3)

The simulation relation says that for every pair of an ele-
ment and a timestamp in the concrete state, there should be
an add event in the abstract state which adds the element
with the same timestamp, and there should not be a remove
event of the same element which witnesses that add event.
This simulation relation is maintained by all the set opera-
tions as well as by the merge operation, and it also matches
the OR-set speci�cation and guarantees convergence. We
use F* to automatically discharge all the proof obligations of
Table 2.

1The proof of the soundness theorem can be found in the extended ver-
sion [34] of the paper.

Space-e�cient OR-set. Following is a candidate valid
simulation relation for the space-e�cient OR-set (OR-set-
space) from §2.1.2:

RB8< ((⇢,>?4A , A E0;, C8<4, E8B),f) ()
(80, C . (0, C) 2 f =) (94 2 ⇢ . >?4A (4) = 033 (0) ^ C8<4 (4) = C)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A)

^(840 2 ⇢ .(>?4A (40) = 033 (0) ^ ¬(9A 2 ⇢ .>?4A (A) = A4<>E4 (0)

^ 40
E8B���! A)) =) C � C8<4 (40))) ^

(84 2 ⇢ .80 2 N. >?4A (4) = 033 (0)

^ ¬(9A 2 ⇢ . >?4A (A) = A4<>E4 (0) ^ 4
E8B���! A) =) (0, _) 2 f)

(4)

The simulation relation, in this case, captures all the con-
straints of the one for OR-set with duplicates but has addi-
tional constraints on the timestamp of the elements in the
concrete state. In particular, for an element in the concrete
state, the timestamp associated with that element will be the
greatest timestamp of all the add events of the same element
in the abstract state, which has not been witnessed by a
remove event. Finally, we also need to capture the constraint
in the abstract to concrete direction. If there is an add event
not seen by a remove event on the same element, then the
element is a member of the concrete state. As before, the
proof obligations of Table 2 are through F*.

5 Composing MRDTs
A key bene�t of our technique is that compound data types
can be constructed by the composition of simpler data types
through parametric polymorphism. The proofs of correctness
of the compound data types can be constructed from the
proofs of the underlying data types.

Certified Mergeable Replicated Data Types 19

[(a,1)]

[]

[(a,2)]

add a rem a

v! v"[(a,2)]

Space-efficient version Space & time-efficient version

• Stores the set internally as a Binary Search
Tree instead of a list

• Much better performance for 𝑟𝑑 queries.
• We can only guarantee convergence modulo

observable behavior.
3

2 4

1 5

3

1 5

2 4

Efficient OR-Set implementations

• Keeps a single version of an element
• Otherwise, it is the same as the original

OR-Set MRDT.

Certified Mergeable Replicated Data Types 20

Peepul: Library of Verified MRDTs in F*

Certified Mergeable Replicated Data Types 21

At-least-once dequeue semantics

Verified Queue MRDT

Certified Mergeable Replicated Data Types 22

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

[1,2,3,4,5]

LCA

[2,3,4,5,8,9] [3,4,5,6,7]

[3,4,5,6,7,8,9]

A B

dequeue
enqueue(8)
enqueue(9)

dequeue
dequeue
enqueue(6)
enqueue(7)

Figure 11. Three-way merge for queues

merged result. Newly inserted elements appear at the su�x,
sorted according to their timestamps.

The merge function �rst converts each of the queues to a
list and �nds the longest common contiguous subsequence
between the three versions ([3,4,5]). The newly enqueued
elements are su�xes of this common subsequence – [8,9]
and [6,7] in queues A and B, respectively. The �nal merged
result is obtained by appending the common subsequence
to the su�xes merged according to their timestamps. Each
of these operations has a time complexity of $ (=) where =
is the length of the longest list. Hence, the merge function is
also an $ (=) operation 2.

6.2 Speci�cation of the Replicated Queue
Wenow provide the speci�cation for the queueMRDT, which
is based on the declarative queue speci�cation in Nagar et
al. [24]. In particular, compared to the sequential queue, the
only constraint that we relax is allowing multiple dequeues
of the same element.
In order to describe the speci�cation, we �rst introduce

a number of axioms which declaratively specify di�erent
aspects of queue behaviour. Consider the match� predicate
de�ned for a pair of events 41, 42 in an abstract execution � :
match� (41, 42) , � .>?4A (41) = 4=@D4D4 (0)

^ � .>?4A (42) = 34@D4D4 ^ 0 = � .AE0; (42)
Let EMPTY be the value returned by a dequeue when the

queue is empty. We de�ne the following axioms:
• �33'4<(�) : 84 2 � .⇢ . � .>?4A (4) = 34@D4D4 ^
� .AE0; (4) < EMPTY =) 94 0 2 � .⇢ . match� (4 0, 4)

• ⇢<?C~ (�) : 841, 42, 43 2 � .⇢ . � .>?4A (41) = 34@D4D4 ^
� .AE0; (41) = EMPTY ^ � .>?4A (42) = 4=@D4D4 (0) ^
42

� .E8B���! 41 =) 943 2 � .⇢ .match� (42, 43)^43
� .E8B���! 41

• ���$1 (�) : 841, 42, 43 2 � .⇢ . � .>?4A (41) = 4=@D4D4 (0) ^
match� (42, 43) ^ 41

� .E8B���! 42 =) 944 2
� .⇢ . match� (41, 44)

2The functional queue simulation relation and implementation can be found
in the extended version [34] of the paper.

• ���$2 (�): 841, 42, 43, 44 2 � .⇢ . ¬(match� (41, 44) ^
match� (42, 43) ^ 41

� .E8B���! 42 ^ 43
� .E8B���! 44)

These axioms essentially encode queue semantics.
�33'4< says that for every dequeue event which does not
return EMPTY, there must exist a matching enqueue event.
⇢<?C~ says that if a dequeue event returns EMPTY, there
should not be an unmatched enqueue visible to it. Finally,
���$1 and ���$2 encode the �rst-in-�rst-out nature of the
queue. These axioms ensure that if an enqueue event 41 was
visible to another enqueue event 42, then the element in-
serted by 41 will be dequeued �rst. Notice that a sequential
queue would also have an injectivity axiom, which disallows
multiple dequeues to be matched to an enqueue, but we do
not enforce this requirement for the replicated queue.
To de�ne F&D4D4 , we �rst note that enqueue operation

always returns ?. For an abstract state � , F&D4D4 (34@D4D4, �)
returns 0 such that if we add the new event 4 for the de-
queue to the abstract state � , then the resulting abstract state
3># (� , 4,34@D4D4,0, C) must satisfy all the queue axioms.

Notice how the queue axioms are substantially di�erent
from the way the MRDT queue is implemented. The sim-
ulation relation that we use to bridge this gap and relate
the implementation with the abstract state is very straight-
forward: we simply say that for every element present in
the concrete state of the queue, there must be an enqueue
event without a matching dequeue. We also assert the other
direction and enforce the queue axioms on the abstract state.
We were able to successfully discharge the conditions for
validity of the simulation relation using F*.

7 Evaluation
In this section, we evaluate the instantiation of the formalism
developed thus far in P�����, an F* library of certi�ed e�-
cient MRDTs. We �rst discuss the veri�cation e�ort followed
by the performance evaluation of e�cient MRDTs compared
to existing work. These results were obtained on a 2-socket
Intel®Xeon®Gold 5120 x86-64 [15] server running Ubuntu
18.04 with 64GB of main memory.

7.1 Veri�cation in F*
F*’s core is a functional programming language inspired by
ML, with support for program veri�cation using re�nement
types and monadic e�ects. Though F* has support for built-
in e�ects, P����� library only uses the pure fragment of the
language. Given that we can extract OCaml code from our
veri�ed implementations in F*, we can directly utilise our
MRDTs on top of Irmin [16], a Git-like distributed database,
whose execution model �ts the MRDT system model.

As part of the P����� library, we have implemented and
veri�ed 9 MRDTs – increment-only counter, PN counter,
enable-wins �ag, last-writer-wins register, grows-only set,
grows-only map, mergeable log, observed-remove set and

Specification of the Queue MRDT

Certified Mergeable Replicated Data Types 23

Merge performance of Peepul and Quark1
Queues

1. Kaki et. al. Mergeable Replicated Data Types. OOPSLA 19

Performance of different OR-Sets

Certified Mergeable Replicated Data Types 24

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Table 3. P����� veri�cation e�ort.

MRDTs veri�ed #Lines code #Lines proof #Lemmas Verif. time (s)

Increment-only counter 6 43 2 3.494

PN counter 8 43 2 23.211

Enable-wins �ag 20 58 3 1074
81 6 171
89 7 104

LWW register 5 44 1 4.21

G-set 10 23 0 4.71
28 1 2.462
33 2 1.993

G-map 48 26 0 26.089

Mergeable log 39 95 2 36.562

OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829

OR-set-space (§2.1.2) 59 108 7 1716

OR-set-spacetime 97 266 7 1854

Queue 32 1123 75 4753

Figure 13. Performance of P����� and Quark OR-sets.

the impact of duplicate elements, we perform an experiment
similar to the queue one except that we pick a 50:50 split
between add and remove operations. The values added are
randomly picked in the range (0:1000). For P�����, we pick
the space-optimized OR-set (OR-set-space). We report the
number of elements in the �nal set including duplicates.
The results are presented in �gure 13. Due to the dupli-

cates, the size of the Quark set increases with an increasing
number of operations; the growth is not linear due to the
stochastic interplay between add and remove. For P�����,
the set size always remains below 1000 which is the range of
the values picked. The results show that MRDTs in P�����
are much more e�cient than in Quark.

7.2.2 P����� OR-set Performance. We also compare
the overall performance of the three OR-set implementations

Operations

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

0

10

20

30

5000 10000 15000 20000 25000 30000

OR-set OR-set-space OR-set-spacetime

Figure 14. Running time of OR-sets.

Figure 15. Space consumption of OR-sets. The OR-set-space
line is hidden by the OR-set-spacetime line.

Compositionality
• Generic 𝛼-map which can

be instantiated with any
element type 𝛼.
• Specification of 𝛼-map

uses the specification of 𝛼
applied to every key.
• We prove the correctness

of 𝛼-map assuming the
correctness of 𝛼.
• We get a whole family of

verified map MRDTs!
Certified Mergeable Replicated Data Types 25

Certified Mergeable Replicated Data Types PLDI ’22, June 13–17, 2022, San Diego, CA, USA

5.1 IRC-Style Chat
To illustrate the bene�ts of compositionality, we consider a
decentralised IRC-like chat application with multiple chan-
nels. Each channel maintains the list of messages in reverse
chronological order so that the most recent message may be
displayed �rst. For simplicity, we assume that the channels
are append-only; while new messages can be posted to the
channels, old messages cannot be deleted. We also assume
that while new channels may be created, existing channels
may not be deleted.

F2⌘0C (A3 (2⌘), h⇢,>?4A , AE0;, C8<4, E8Bi) = ;>6 where
1: (8C,<. (C,<) 2 ;>6 () 94 2 ⇢ .

>?4A (4) = B4=3 (2⌘,<) ^ C8<4 (4) = C) ^
2: (8C1,<1, C2,<2. >A3 (C1,<1) (C2,<2) ;>6

() 941, 42 2 ⇢ . >?4A (41) = B4=3 (2⌘,<1) ^
C8<4 (41) = C1 ^ >?4A (42) = B4=3 (2⌘,<2) ^
C8<4 (42) = C2 ^ C1 > C2)

Figure 6. The speci�cation of IRC-style chat.

The chat application supports sending a message to a
channel and reading messages from a channel: $?2⌘0C =
{B4=3 (2⌘,<) | 2⌘ 2 BCA8=6 ^ < 2 BCA8=6)} [{A3 (2⌘)
| 2⌘ 2 BCA8=6}. The speci�cation of this chat application is
given in Figure 6. For this we de�ne a predicate >A3 such
that >A3 (C1,<1) (C2,<2) ; holds i� C1 < C2 and (C1,<1) occurs
before (C2,<2) in list ; . The speci�cation essentially says the
log of messages contains all (and only those) messages that
were sent, and messages are ordered in reverse chronological
order.

Rather than implement this chat application from scratch,
we may quite reasonably build it using existing MRDTs. We
may use an MRDT map to store the association between
the channel names and the list of messages. Given that the
conversations take place in a decentralized manner, the list
of messages in each channel should also be mergeable. For
this purpose, we use a mergeable log, an MRDT list that
totally orders the messages based on the message timestamp,
to store the messages in each of the channels. As mentioned
earlier, for simplicity we will assume that the map and the
log are grow-only.

5.2 Mergeable Log
The mergeable log MRDT supports operations to append
messages to the log and to read the log: $?;>6 = {A3} [
{0??4=3 (<) | < 2 BCA8=6}. The log maintains messages in
reverse chronological order. Figure 7 presents the speci�ca-
tion, implementation and simulation relation of the merge-
able log. The B>AC function sorts the list in reverse chrono-
logical order based on the timestamps associated with the
messages.

F;>6 (A3, h⇢,>?4A , AE0;, C8<4, E8Bi) = ;BC where
1: (8C,<. (C,<) 2 ;BC ()

94 2 ⇢ . >?4A (4) = 0??4=3 (<) ^ C8<4 (4) = C) ^
2: (8C1,<1, C2,<2. >A3 (C1,<1) (C2,<2) ;BC ()

941, 42 2 ⇢ . >?4A (41) = 0??4=3 (<1) ^ C8<4 (41) = C1
^ >?4A (42) = 0??4=3 (<2) ^ C8<4 (42) = C2 ^ C1 > C2)

D;>6 = (⌃,f0,3>,<4A64;>6) where
1: ⌃;>6 = P(N ⇥ BCA8=6)
2: f0 = {}
3: 3> (0??4=3 (<),f, C) = ((C,<) :: f,?)
4: 3> (A3,f, C) = (f,f)
5: <4A64;>6 (f;20,f0,f1) =

B>AC ((f0 � f;20) @ (f1 � f;20)) @ f;20

RB8<�;>6 (� ,f) ()
1: (8C,<. (C,<) 2 f ()

94 2 � .⇢ . >?4A (4) = 0??4=3 (<) ^ C8<4 (4) = C) ^
2: (8C1,<1, C2,<2. >A3 (C1,<1) (C2,<2) f ()

941, 42 2 � .⇢ . >?4A (41) = 0??4=3 (<1) ^ C8<4 (41) = C1
^ >?4A (42) = 0??4=3 (<2) ^ C8<4 (42) = C2 ^ C1 > C2)

Figure 7. The speci�cation, implementation and the simula-
tion relation of mergeable log.

FU�<0? (64C (:,>U), �) =
let �U = ?A> 942C (:, �) in FU (>U , �U)

DU�<0? = (⌃,f0,3>,<4A64U�<0?) where
1: ⌃U�<0? = P(BCA8=6 ⇥ ⌃U)
2: f0 = {}

3: X (f,:) =
(
f (:), if : 2 3><(f)
f0U , otherwise

4: 3> (B4C (:,>U),f, C) =
let (E, A) = 3>U (>U , X (f,:), C) in (f [: 7! E], A)

5: 3> (64C (:,>U),f, C) =
let (_, A) = 3>U (>U , X (f,:), C) in (f, A)

6: <4A64U�<0? (f;20,f0,f1) =
{(:, E) | (: 2 3><(f;20) [3><(f0) [3><(f1)) ^

E =<4A64U (X (f;20,:), X (f0,:), X (f1,:))

RB8<�U�<0? (� ,f) () 8: .
1: (: 2 3><(f) () 94 2 � .⇢ . >?4A (4) = B4C (:, _)) ^
2: RB8<�U (?A> 942C (:, �), X (f,:))

Figure 8. The speci�cation, implementation and simulation
relation of U-map.

5.3 Generic Map
We introduce a generic map MRDT, U-map, which asso-
ciates string keys with a value, where the value stored in the
map is itself an MRDT. This U-map is parameterised on an

Conclusion and Future Work

• We have proposed a technique to verify both the functional
correctness and convergence of MRDTs.
• We have successfully applied our technique on a number of

challenging MRDTs.
• Our technique supports verification of efficient implementations, as

well as compositionality through parametric polymorphism.
• Future work: Applying our technique on more complex MRDTs (e.g.

JSON Automerge MRDT)
• Future work: Improve automation

Certified Mergeable Replicated Data Types 26

Thank You
Questions?

