Certified Mergeable Replicated Data Types

Kartik Nagar

Joint work with Vimala S, Adharsh Kamath and KC Sivaramakrishnan. *To appear in* PLDI 22.

Outline

- Introduction
 - Replicated Systems
 - MRDT
- MRDT Verification Problem
- Our proposed technique
- Example
- Experimental Results
- Conclusion

Replicated Systems

- Creating multiple replicas of data, independently operated, potentially geodistributed.
- Many benefits
 - Fault Tolerance
 - Availability
 - Low latency for geo-distributed clients
- How to safely write applications for replicated systems?
 - Programming would be easier if it appears as a single, 'centralized' system.
 - Unfortunately, this incurs massive synchronization cost.
- Instead, we have a library of basic replicated data types with slightly 'weaker' semantics.

Mergeable Replicated Data Types (MRDTs)

- Version-control model of replication.
- Three-way merge function 2 concurrent versions and their Lowest Common Ancestor (LCA) between them.
- Consider the counter MRDT:

merge lca
$$v_1v_2 = lca + (v_1 - lca) + (v_2 - lca)$$

Set RDT

Desired specification: Add wins

Observed-Remove Set MRDT

Implementation

 $D_{\tau} = (\Sigma, \sigma_0, do, merge)^{-1}$

1:
$$\Sigma = \mathcal{P}(\mathbb{N} \times \mathbb{N})$$

2: $\sigma_0 = \{\}$
3: $do(rd, \sigma, t) = (\sigma, \{a \mid (a, t) \in \sigma\})$
4: $do(add(a), \sigma, t) = (\sigma \cup \{(a, t)\}, \bot)$
5: $do(remove(a), \sigma, t) = (\{e \in \sigma \mid fst(e) \neq a\}, \bot)$
6: $merge(\sigma_{lca}, \sigma_a, \sigma_b) = (\sigma_{lca} \cap \sigma_a \cap \sigma_b) \cup (\sigma_a - \sigma_{lca}) \cup (\sigma_b - \sigma_{lca})$

Observed-Remove Set Specification

Abstract state

 $I = \langle E, oper, rval, time, vis \rangle$

- *E* is the set of events
- $oper: E \rightarrow Op$
- $rval: E \rightarrow Val$
- $time: E \rightarrow \mathbb{N}$
- $vis \subseteq E \times E$

Visibility Relation in Abstract State

Observed-Remove Set Specification

Abstract state

 $I = \langle E, oper, rval, time, vis \rangle$

- *E* is the set of events
- $oper: E \rightarrow Op$
- $rval: E \rightarrow Val$
- $time: E \rightarrow \mathbb{N}$
- $vis \subseteq E \times E$

Specification

 $\mathcal{F}_{orset}(\mathsf{rd}, \langle E, oper, rval, time, vis \rangle) = \{a \mid \exists e \in E. oper(e) \\ = \mathsf{add}(a) \land \neg (\exists f \in E. oper(f) = \mathsf{remove}(a) \land e \xrightarrow{vis} f) \}$

The problem

Implementation

Specification

- 1: $\Sigma = \mathcal{P}(\mathbb{N} \times \mathbb{N})$
- 2: $\sigma_0 = \{\}$
- 3: $do(rd, \sigma, t) = (\sigma, \{a \mid (a, t) \in \sigma\})$
- 4: $do(add(a), \sigma, t) = (\sigma \cup \{(a, t)\}, \bot)$
- 5: $do(remove(a), \sigma, t) = (\{e \in \sigma \mid fst(e) \neq a\}, \bot)$
- 6: $merge(\sigma_{lca}, \sigma_a, \sigma_b) =$ $(\sigma_{lca} \cap \sigma_a \cap \sigma_b) \cup (\sigma_a - \sigma_{lca}) \cup (\sigma_b - \sigma_{lca})$
- $\mathcal{F}_{orset}(\mathsf{rd}, \langle E, oper, rval, time, vis \rangle) = \{a \mid \exists e \in E. oper(e) \\ = \mathsf{add}(a) \land \neg (\exists f \in E. oper(f) = \mathsf{remove}(a) \land e \xrightarrow{vis} f) \}$

- 1. Does the implementation satisfy the specification?
- 2. Does the implementation ensure convergence?
 - Two replicas which have witnessed the same set of events must have the same state.

Our Contributions

- We propose a simulation-based verification procedure for showing functional correctness and convergence for MRDTs.
- We mechanize and automate the complete verification process using F*.
- We propose a new, weaker notion of convergence modulo observable behavior which permits more efficient MRDT implementations.
- We have built a library of efficient and verified MRDTs for common data structures such as set, map, queue, flag, etc.

Replication-aware Simulation Relation¹

- $\mathcal{R}_{sim}(I, \sigma)$ relates an abstract state I with concrete state σ .
 - \mathcal{R}_{sim} is the glue relating the concrete and abstract states, as well as the implementation and specification
- Verification using \mathcal{R}_{sim} is done in two steps:
 - 1. We show that \mathcal{R}_{sim} holds in all executions in an inductive fashion.
 - 2. We show that \mathcal{R}_{sim} is sufficient to discharge the specification and convergence requirements.

1. Burckhardt et. al. Replicated Data Types: Specification, Verification and Optimality. POPL 2014.

OR-Set MRDT Simulation Relation

$$\mathcal{R}_{sim}(I,\sigma) \iff (\forall a, t. (a, t) \in \sigma \iff (\exists e \in I.E \land I. oper(e) = add(a) \land I.time(e) = t \land \neg (\exists f \in I.E \land I. oper(f) = remove(a) \land e \xrightarrow{vis} f)))$$

Verification using
$$\mathcal{R}_{sim}$$
: St

We show that \mathcal{R}_{sim} holds inductively at

cution

1. Verifying operations

2. Verifying merge

Verification using \mathcal{R}_{sim} : Step-2

We show that \mathcal{R}_{sim} is sufficient to prove specification and convergence

3. Verifying specification

4. Verifying convergence

Store Properties

 Ψ_{ts} asserts increasing timestamps according to the visibility relation

$\Psi_{ts}(I)$	$\forall e, e' \in I.E. \ e \xrightarrow{I.vis} e' \Rightarrow I.time(e) < I.time(e')$
	$\land \forall e, e' \in I.E. \ I.time(e) = I.time(e') \Longrightarrow e = e'$
$\Psi_{lca}(I_l, I_a, I_b)$	$I_l . E = I_a . E \cap I_b . E$
	$\land I_l.vis = I_a.vis_{ I_l.E} = I_b.vis_{ I_l.E}$

 Ψ_{lca} asserts that events in LCA are present in both the branches, with the same visibility relation

We assume the store properties while proving \mathcal{R}_sim

Example: Verifying \mathcal{R}_{sim} for OR-Set MRDT

Simulation Relation: $\mathcal{R}_{sim}(I,\sigma) \iff (\forall a,t. (a,t) \in \sigma \iff)$ $(\exists e \in I.E \land I. oper(e) = add(a) \land I.time(e) = t \land$ $\neg(\exists f \in I.E \land I. oper(f) = remove(a) \land e \xrightarrow{vis} f)))$

17

 $I_{lca} \qquad \sigma_b$ $\mathcal{R}_{cim} \qquad / \mathcal{R}_{aim}$ σ_a \mathcal{R} . : .

Example: Ver fifying \mathcal{R}_{sim} for OR-Set MRDT \mathcal{R}_{sim} $|\mathcal{R}_{sim}|$ [] Simulation Relation: σ add a $\mathcal{R}_{sim}(I,\sigma) \stackrel{\mathcal{D}_{\tau}.do}{\longleftrightarrow} (\forall a, t. (a, t) \in \sigma \iff$ [(a,1)] LCA $(\exists e \in I.E \land I. oper(e) = add(a) \land I.time(e) = t \land$ add b rem a $\neg(\exists f \in I.E \land I. oper(f) = remove(a) \land e \xrightarrow{vis} f)))$ [(a,1); (b,2)] Α [] В

Efficient OR-Set implementations

Space-efficient version

- Keeps a single version of an element
- Otherwise, it is the same as the original OR-Set MRDT.

Space & time-efficient version

- Stores the set internally as a Binary Search Tree instead of a list
- Much better performance for *rd* queries.
- We can only guarantee convergence modulo observable behavior.

Peepul: Librar	y of Verified	MRDTs in F*
----------------	---------------	-------------

MRDTs verified	#Lines code	#Lines proof	#Lemmas	Verif. time (s)
Increment-only counter	6	43	2	3.494
PN counter	8	43	2	23.211
Enable-wins flag	20	58	3	1074
		81	6	171
		89	7	104
LWW register	5	44	1	4.21
G-set	10	23	0	4.71
		28	1	2.462
		33	2	1.993
G-map	48	26	0	26.089
Mergeable log	39	95	2	36.562
OR-set (§2.1.1)	30	36	0	43.85
		41	1	21.656
		46	2	8.829
OR-set-space (§2.1.2)	59	108	7	1716
OR-set-spacetime	97	266	7	1854
Queue	32	1123	75	4753

Verified Queue MRDT

At-least-once dequeue semantics

Specification of the Queue MRDT

 $\begin{aligned} \mathsf{match}_I(e_1,e_2) &\Leftrightarrow I.oper(e_1) = enqueue(a) \\ &\land I.oper(e_2) = dequeue \land a = I.rval(e_2) \end{aligned}$

- $AddRem(I) : \forall e \in I.E. \ I.oper(e) = dequeue \land$ $I.rval(e) \neq EMPTY \implies \exists e' \in I.E. \ match_I(e', e)$
- $Empty(I) : \forall e_1, e_2, e_3 \in I.E. \ I.oper(e_1) = dequeue \land$ $I.rval(e_1) = EMPTY \land I.oper(e_2) = enqueue(a) \land$ $e_2 \xrightarrow{I.vis} e_1 \implies \exists e_3 \in I.E. \ match_I(e_2, e_3) \land e_3 \xrightarrow{I.vis} e_1$
- $FIFO_1(I) : \forall e_1, e_2, e_3 \in I.E. \ I.oper(e_1) = enqueue(a) \land$ $match_I(e_2, e_3) \land e_1 \xrightarrow{I.vis} e_2 \implies \exists e_4 \in I.E. \ match_I(e_1, e_4)$
- $FIFO_2(I): \forall e_1, e_2, e_3, e_4 \in I.E. \neg (\text{match}_I(e_1, e_4) \land \text{match}_I(e_2, e_3) \land e_1 \xrightarrow{I.vis} e_2 \land e_3 \xrightarrow{I.vis} e_4)$

Merge performance of Peepul and Quark¹ Queues

^{1.} Kaki et. al. Mergeable Replicated Data Types. OOPSLA 19

Performance of different OR-Sets

Compositionality

- Generic α -map which can be instantiated with any element type α .
- Specification of α -map uses the specification of α applied to every key.
- We prove the correctness of α -map assuming the correctness of α .
- We get a whole family of verified map MRDTs!

9	$\mathcal{F}_{\alpha-map}(get(k, o_{\alpha}), I) =$ let $I_{\alpha} = project(k, I)$ in $\mathcal{F}_{\alpha}(o_{\alpha}, I_{\alpha})$
2	$D_{\alpha-map} = (\Sigma, \sigma_0, do, merge_{\alpha-map})$ where
1:	$\Sigma_{\alpha-map} = \mathcal{P}(string \times \Sigma_{\alpha})$
2:	$\sigma_0 = \{\}$
0	$\int \sigma(k), \text{if } k \in dom(\sigma)$
3:	$\delta(\sigma, k) = \begin{cases} \sigma(k), & \text{if } k \in dom(\sigma) \\ \sigma_{0_{\alpha}}, & \text{otherwise} \end{cases}$
4:	$do(set(k, o_{\alpha}), \sigma, t) =$
	$let (v, r) = do_{\alpha}(o_{\alpha}, \delta(\sigma, k), t) in (\sigma[k \mapsto v], r)$ $do(get(k, o_{\alpha}), \sigma, t) =$
5:	$do(get(k, o_{\alpha}), \sigma, t) =$
	let $(_, r) = do_{\alpha}(o_{\alpha}, \delta(\sigma, k), t)$ in (σ, r)
6:	$merge_{\alpha-map}(\sigma_{lca},\sigma_{a},\sigma_{b}) =$
	$\{(k,v) \mid (k \in dom(\sigma_{lca}) \cup dom(\sigma_a) \cup dom(\sigma_b)) \land$
	$v = merge_{\alpha}(\delta(\sigma_{lca}, k), \delta(\sigma_{a}, k), \delta(\sigma_{b}, k))$
ſ	$R_{sim-\alpha-map}(I,\sigma) \iff \forall k.$

$$\begin{array}{ccc} \mathcal{R}_{sim-\alpha-map}(I,\sigma) & \Longleftrightarrow & \forall k. \\ 1: & (k \in dom(\sigma) & \Longleftrightarrow & \exists e \in I.E. \ oper(e) = set(k,_)) \land \\ 2: & \mathcal{R}_{sim-\alpha} \ (project(k,I), \ \delta(\sigma,k)) \end{array}$$

Conclusion and Future Work

- We have proposed a technique to verify both the functional correctness and convergence of MRDTs.
- We have successfully applied our technique on a number of challenging MRDTs.
- Our technique supports verification of efficient implementations, as well as compositionality through parametric polymorphism.
- Future work: Applying our technique on more complex MRDTs (e.g. JSON Automerge MRDT)
- Future work: Improve automation

Thank You

Questions?