Certified Mergeable Replicated Data
Types

Kartik Nagar

Joint work with Vimala S, Adharsh Kamath and KC
Sivaramakrishnan.
To appear in PLDI 22.

Certified Mergeable Replicated Data Types

Outline

* Introduction
* Replicated Systems
* MRDT

* MRDT Verification Problem
* Our proposed technique

* Example

* Experimental Results

e Conclusion

Replicated Systems

* Creating multiple replicas of data, independently operated, potentially geo-
distributed.

* Many benefits
* Fault Tolerance
* Availability
* Low latency for geo-distributed clients
* How to safely write applications for replicated systems?

* Programming would be easier if it appears as a single, ‘centralized’ system.
* Unfortunately, this incurs massive synchronization cost.

* Instead, we have a library of basic replicated data types with slightly
‘weaker’ semantics.

Mergeable Replicated Data Types (MRDTSs)

Version-control model of replication.

Three-way merge function — 2 concurrent versions and their Lowest Common Ancestor (LCA)
between them.

Consider the counter MRDT:
5
7 N\
.7 3 |V
\+1
4

v) merge lca v;v, = lca + (v; —Ica) + (v, —lca)

Set RDT

add i/ \iem a

N7

rd should return a

Desired specification: Add wins

Certified Mergeable Replicated Data Types

Observed-Remove Set MRDT

Implementation

[(a,1)] D, = (E, 00, dO, merge) !

adda S N\ S =P(NXN)
A [(a,1); (a,2)] [l B oo = {}
do(rd,o,t) = (0,{a| (a,t) € 0})
do(add(a),o,t) = (c U {(a, 1)}, L)
do(remove(a),o,t) = ({e € o | fst(e) # a}, L)
merge(o'lcw Oa» Op) =
(01ca N 0g N 0p) U (04 = O1ca) U (0 = Oica)

AN U S v

[(a,2)]

Observed-Remove Set Specification

Abstract state

I = (E, oper, rval, time, vis)
add zi/ \iem a

E is the set of events
oper:E — Op
rval: E - Val
time:E - N

VisC€ EXE

rd should return a

Visibility Relation in Abstract State

lS

Observed-Remove Set Specification

Abstract state

I = (E, oper, rval, time, vis)
add zi/ \iem a

 Eisthe set of events
oper:E — Op
rval: E - Val
time:E - N

VisC€ EXE

rd should return a o _
Specification

Forser (rd, (E, oper, rval, time,vis)) = {a | e € E. oper(e)

vis

= add(a) A =(3f € E. oper(f) = remove(a) Ae — f)}

The problem

AN AN R v

Implementation Specification
> =P(NxN)
oo = {} i) = (g |
do(rd,0.) = (0. {a | (a1) € o)) Torselr (B, opersroal time.ois)) = {a | 3¢ € . oper(e)
do(add(a), 0, 1) = (o U {(a,1)}, L) = add(a) A ~(3f € E. oper(f) = remove(a) A ¢~)
do(remove(a),o,t) = ({e € o | fst(e) # a}, L)
merge(Oicq, Og, Op) =

(O'lca Nog N O'b) U (O-a - Ulca) U (O'b - O'lca)

. Does the implementation satisfy the specification?
. Does the implementation ensure convergence?

* Two replicas which have witnessed the same set of events must have the
same state.

Certified Mergeable Replicated Data Types 10

Our Contributions

* We propose a simulation-based verification procedure for showing
functional correctness and convergence for MRDTs.

* We mechanize and automate the complete verification process using
F*.

* We propose a new, weaker notion of convergence modulo observable
behavior which permits more efficient MRDT implementations.

* We have built a library of efficient and verified MRDTs for common
data structures such as set, map, queue, flag, etc.

Certified Mergeable Replicated Data Types 11

Replication-aware Simulation Relation

* R.im(I, 0) relates an abstract state I with concrete state o.
* R.im is the glue relating the concrete and abstract states, as well as the
implementation and specification

* Verification using R¢;,, is done in two steps:
1. We show that Rg;,,, holds in all executions in an inductive fashion.

2. We show that Rg;,, is sufficient to discharge the specification and
convergence requirements.

1. Burckhardt et. al. Replicated Data Types: Specification, Verification and Optimality. POPL 2014.

OR-Set MRDT Simulation Relation

Rsim(I,0) & (Va,t. (a,t) €0 &
(de € I.LE A I. oper(e) = add(a) A I.time(e) =t A

vis

—(3f € I.LE A L. oper(f) = remove(a) Ne — f)))

Verification using R¢;m,: Step-1

We show that R.;,,, holds inductively at every step in every execution

1. Verifying operations

7 ,
4" g
Rsiml \Rszm
) > O'/
D, .do

2. Verifying merge

Oa Iica Ob
Rsim I I Rsim I Rsim
1 a Olca I b

l

DT.merge(Ulca, Oa; Ub)
IRsim
merge# (Lo, Ip)

Certified Mergeable Replicated Data Types 14

Verification using R, Step-2

We show that R, is sufficient to prove specification and convergence

3. Verifying specification 4. Verifying convergence
I F I
%‘
Rsim v Rsim :Rsim
,o?}3
o Mv o = Oy

Certified Mergeable Replicated Data Types

15

Store Properties

Y, . asserts increasing timestamps according to the visibility relation

¥ (1) Ve,e’ € I.E. e Lok, e’ = I.time(e) < I.time(e’)
AVe,e’ € I.E. I.time(e) = I.time(e’) > e =¢’
Yiea(I1, I, Ipy) L.E=1,ENI.E
A Ij.vis = Ig.0is|, g = Ip.0is|, E

Y, .q asserts that events in LCA are present in both the branches,
with the same visibility relation

We assume the store properties while proving R_sim

Certified Mergeable Replicated Data Types 16

Example: Veritying R;p, Tor OR-Set MRDT

[]

Simulation Relation:

Rom (o) &= (Vat. (a,t) €0 = adda l
(de € I.LE AL oper(e) = add(a) A I.time(e) =t A [(a,1)]
—(3f €e .LE AL oper(f) = remove(a) Ae o,) 2 E)/

A [(a,1); (b,2)]

:

—% g

7?/szml \Rszm
o .o

Example: Veritying R;p, Tor OR-Set MRDT

Simulation Relation:

Rsim(I,0) < (Va,t. (a,t) €0
(de € I.LE A I. oper(e) = add(a) A I.time(e) =t A

vis

=(3f € I.LE AL oper(f) = remove(a) Ae — f)))

Oa Tica Ob
Rsim I I Rsim IRsim
Ia Olca Ib

|

DT.TTL@Tge(Ulcaa Oa; 01))
IRsim
merge#(Im Iy)

(]

add a l

[(a,1)] ~ LCA

add E)/ \fm a

A [(a,1); (b,2)] [l B

[(b,2)]

Store Property:

\I]lca (Il5 Ia, Ib) IlE = Ia.E N IbE
A Ij.vis = I.0is|, g = Ip.0is|;, E

Certified Mergeable Replicated Data Types

18

Efficient OR-Set implementations

Space-efficient version

Keeps a single version of an element
Otherwise, it is the same as the original

OR-Set MRDT.

\41

add zi/

[(a,2)]

[(a,2)]

[(a,1)]

\rem a
[l v

Space & time-efficient version

Stores the set internally as a Binary Search
Tree instead of a list

Much better performance for rd queries.
We can only guarantee convergence modulo

observable behavior.
3 3
2 4 1 5

/NN

1

5 2 4

Peepul: Library of Verified MRDTs in F*

MRDTs verified #Lines code #Lines proof @~ #Lemmas Verif. time (s)
Increment-only counter 6 43 2 3.49%4
PN counter 8 43 2 23.211
Enable-wins flag 20 58 3 1074
31 6 171
89 7 104
LWW register 5 44 1 4.21
G-set 10 23 0 4.71
28 1 2.462
33 2 1.993
G-map 48 26 0 26.089
Mergeable log 39 95 2 36.562
OR-set (§2.1.1) 30 36 0 43.85
41 1 21.656
46 2 8.829
OR-set-space (§2.1.2) 59 108 7 1716
OR-set-spacetime 97 266 7 1854

ueue 32 1123
Q

~
8}

4753

Verified Queue MRDT

LCA

dequeue

dequeue

dequeue
enqueue(8) esgueue(G)
enqueue(9) enqueue(7)

[3,4,5,6,7,8,9]

At-least-once dequeue semantics

Certified Mergeable Replicated Data Types

21

Specification of the Queue MRDT

matchy(eq, e2) & lL.oper(e;) = enqueue(a)

A L.oper(e;) = dequeue A a = L.rval(e,)

e AddRem(I) :Ve € L.E. I.oper(e) = dequeue A
L.rval(e) # EMPTY = de’ € I.E. match;(e’, e)

o Empty(I) : Vey, ez, e3 € I.E. I.oper(e;) = dequeue A
L.rval(e;) = EMPTY A Loper(e;) = enqueue(a) A

I.vis I.vis
e, — e; = des € I.LE. matchj(es, e3) ANes — e

e FIFO{(I):Vey, ey, e3 € I.LE. I.oper(e;) = enqueue(a) A

I.oi
matchy(es, e3) A e o, e, —> dey € I.E. matchy(eq, e4)

e FIFO,(I): Vey, ez, e3,e4 € I.LE. =(matchy(eg, eq) A
1.vis 1.vis
matchy(es, e3) A e — es A e3 — ey)

Certified Mergeable Replicated Data Types

Merge performance of Peepul and Quark?
Queues

) 100 .’.’.—.__.—.'—-.—._'

o

=

S :

o Quark

/i

o)

g 0.01

O Peepul

S 0.0001 eW

)

= Q Q Q Q Q Q Q Q Q
Q Q Q \) Q Q Q Q Q
FEFLE LSS

Operations

1. Kaki et. al. Mergeable Replicated Data Types. OOPSLA 19

Certified Mergeable Replicated Data Types

23

Performance of different OR-Sets

N w
o o

Time taken (seconds)
o

5000 10000 15000 20000 25000 30000

Operations
® OR-set 4 OR-set-space OR-set-spacetime

Certified Mergeable Replicated Data Types

24

Compositionality

* Generic a-map which can
be instantiated with any
element type a.

* Specification of a-map
uses the specification of «
applied to every key.

* We prove the correctness
of a-map assuming the
correctness of «.

* We get a whole family of
verified map MRDTs!

7:oz—map (get(k> 00()’ I) =

let I, = project(k,I) in Fy (04, 1)

Z)a—map = (23 O-Os dO, mergea—map) Where

Ya-map = P(string X Xg)
oo = {}

5(0.k) - { o(k), ifk e dom(o)

0p,, otherwise
do(set(k, 04),0,t) =

let (v,7) = dog(04,6(0, k), t) in (o[k — v],r)
do(get(k,o04),0,t) =

let (_,r) =doy(04,8(0,k),t) in (o,1)
mergeq—map(Olcas Oas Op) =

{(k,0) | (k € dom(0jcq) U dom(o,) U dom(oyp)) A
v = mergey(86(01ca, k), 8(04, k), 8(0p, k))

l:\")r—k

Rsim-a-map(l,0) & Vk.
: (k e dom(o) &= e € I.E. oper(e) = set(k,_))

A
Rsim—a (projeCt(k> I)! 5(0, k)) J

Conclusion and Future Work

* We have proposed a technique to verify both the functional
correctness and convergence of MRDTSs.

* We have successfully applied our technique on a number of
challenging MRDTs.

* Our technique supports verification of efficient implementations, as
well as compositionality through parametric polymorphism.

* Future work: Applying our technique on more complex MRDTs (e.g.
JSON Automerge MRDT)

* Future work: Improve automation

Thank You

Questions?

