
Verified native code generation in a JIT compiler
Cambium Seminar

Aurèle Barrière Sandrine Blazy David Pichardie

May 30th, 2022

Formally verified static compilation

1 23

Behavior bb

State of the Art: Veri�ed static compilers
CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

What about JIT compilation veri�cation?
JIT compilation: Interleave execution and optimization of the program.

Formally verified static compilation

1 23

Behavior bb

State of the Art: Veri�ed static compilers
CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

What about JIT compilation veri�cation?
JIT compilation: Interleave execution and optimization of the program.

Formally verified static compilation

1 23

Behavior b

b

State of the Art: Veri�ed static compilers
CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

What about JIT compilation veri�cation?
JIT compilation: Interleave execution and optimization of the program.

Formally verified static compilation

1 23

Behavior bb

State of the Art: Veri�ed static compilers
CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

What about JIT compilation veri�cation?
JIT compilation: Interleave execution and optimization of the program.

Formally verified static compilation

1 23

Behavior bb

State of the Art: Veri�ed static compilers
CompCert [Leroy 2006], CakeML [Kumar et al. 2014], VeLLVM [Zhao et al. 2012].
Compilation happens statically: the code is produced before its execution.

What about JIT compilation veri�cation?
JIT compilation: Interleave execution and optimization of the program.

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: g

Optimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: g

Optimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler

Native: g_x86

Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.

2 23

Executing a program with a JIT with speculative optimizations

Execution
Stack

Interpreter: f

Interpreter: gOptimizing
Compiler

Native: g_x86 Speculation fails

Interpreter: g On-stack replacement

Program

Function f():
while (...):
g()

Function g():
g1
g2

Function g_x86():
g1
Speculation (x=7)
g2’

Deoptimization requires the JIT to
Synthesize interpreter stackframes in the middle of a function.
Possibly synthesize many stackframes at once.

With speculation, JITs need precise execution stack manipulation.
2 23

Formally Verified JIT Compilation

Our Goals
A veri�ed and executable JIT in Coq.

Modern and e�cient JIT compilers features:
Dynamic Optimizations.
With native code generation and execution.
With speculation and on-stack replacement.

Proof modularity and reusability:
Using CompCert as a backend compiler (translating RTL to x86).
Reusing CompCert’s backend proof.
Reusing CompCert’s proof methodology (simulation framework).

3 23

A JIT compilation correctness theorem

CompCert Theorem
If we compile a program whose behaviors are free of errors, then any behavior of the compiled
program is a behavior of the source program.
Theorem transf_c_program_is_refinement:
∀ p tp,
transf_c_program p = OK tp→
(∀ beh, program_behaves (Csem.semantics p) beh→ not_wrong beh)→
(∀ beh, program_behaves (Asm.semantics tp) beh→ program_behaves (Csem.semantics p) beh).

4 23

A JIT compilation correctness theorem

CompCert Theorem
If we compile a program whose behaviors are free of errors, then any behavior of the compiled
program is a behavior of the source program.
Theorem transf_c_program_is_refinement:
∀ p tp,
transf_c_program p = OK tp→
(∀ beh, program_behaves (Csem.semantics p) beh→ not_wrong beh)→
(∀ beh, program_behaves (Asm.semantics tp) beh→ program_behaves (Csem.semantics p) beh).

JIT Theorem
If the semantics (CoreIR_sem) of the program is free of errors, then any behavior of the JIT on that
program (jit_sem) is a behavior of the program.
Theorem jit_same_safe_behavior:
∀ (p:program),
(∀ beh, program_behaves (CoreIR_sem p) beh→ not_wrong beh)→
(∀ beh, program_behaves (jit_sem p) beh→

program_behaves (CoreIR_sem p) beh).
How do we de�ne jit_sem ?4 23

Towards A Formally Verified JIT middle-end

JIT-speci�c veri�cation problems

Speculative optimizations.
Dynamic Optimizations interleaved with execution.
Impure and non-terminating components.
Integrate the correctness proof of a static compiler backend.

Previous Work: Formally veri�ed speculation and deoptimization in a JIT compiler, POPL21
Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek.
https://github.com/Aurele-Barriere/CoreJIT

CoreIR, inspired by RTL and speculative instructions ([Flückiger et al. 2018]).
Correctness theorem of CoreJIT with interpretation, dynamic optimizations, and speculations.

A theorem about IR to IR transformation. No native code generation in the formal model.

5 23

Towards A Formally Verified JIT middle-end

JIT-speci�c veri�cation problems

Speculative optimizations.
Dynamic Optimizations interleaved with execution.
Impure and non-terminating components.
Integrate the correctness proof of a static compiler backend.

Previous Work: Formally veri�ed speculation and deoptimization in a JIT compiler, POPL21
Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek.
https://github.com/Aurele-Barriere/CoreJIT

CoreIR, inspired by RTL and speculative instructions ([Flückiger et al. 2018]).
Correctness theorem of CoreJIT with interpretation, dynamic optimizations, and speculations.

A theorem about IR to IR transformation. No native code generation in the formal model.

5 23

Towards A Formally Verified JIT middle-end

JIT-speci�c veri�cation problems

Speculative optimizations.
Dynamic Optimizations interleaved with execution.
Impure and non-terminating components.
Integrate the correctness proof of a static compiler backend.

Previous Work: Formally veri�ed speculation and deoptimization in a JIT compiler, POPL21
Aurèle Barrière, Sandrine Blazy, Olivier Flückiger, David Pichardie, Jan Vitek.
https://github.com/Aurele-Barriere/CoreJIT

CoreIR, inspired by RTL and speculative instructions ([Flückiger et al. 2018]).
Correctness theorem of CoreJIT with interpretation, dynamic optimizations, and speculations.

A theorem about IR to IR transformation. No native code generation in the formal model.

5 23

A JIT Architecture

6 23

JIT architecture
Extends the architecture from [Barrière et al.
2021] with native code generation and execution.

JIT loop
The monitor chooses the next step: execution or
optimization.
Pro�ling: records information about the
execution and suggests speculations.

A JIT Architecture

6 23

Interpreter
Interpret the IR code that has not been compiled
to native.

A JIT Architecture

6 23

Middle-end Optimizer
From the IR to the IR.
Inserts speculation.

POPL21
The correctness theorem of our previous work is
about these components.
A Coq proof that any behavior of this JIT
prototype is a behavior of the input program.

A JIT Architecture

6 23

Backend Compilation
Generates native code, as in a static compiler
backend.
Use the CompCert backend from RTL to x86.

Code Installation
Install the dynamically generated code in
memory.
Make it executable.

A JIT Architecture

6 23

Setting up native execution
Get a function pointer for the installed code.

Native Code Execution
Run the generated code.

A JIT Architecture

6 23

Can we really write a JIT in Coq?
Some JIT components are impure.
Global shared data-structures: execution stack
and executable memory.
The call to native code may even be
non-terminating.

A JIT Architecture

6 23

Can we really write a JIT in Coq?
Some JIT components are impure.
Global shared data-structures: execution stack
and executable memory.
The call to native code may even be
non-terminating.

Free Monads
Interaction Trees [Xia et al. 2020] and
FreeSpec [Letan and Régis-Gianas 2020] use a
variation of the free monad to reason about
impure programs in Coq.

State and Error Monads

State monads are perfect to specify functions with an e�ect on a global state. Either the function
fails, or it succeeds and returns the next global state. Found in CompCert.
Inductive sres (state:Type) (A:Type): Type :=
| SError : errmsg→ sres state A
| SOK: A→ state→ sres state A.
Definition state_mon {state:Type} (A:Type) : Type := state→ sres state A.

7 23

Executable JIT
This is �ne to specify the primitives, but the actual JIT
should execute actual impure primitives.

State and Error Monads

State monads are perfect to specify functions with an e�ect on a global state. Either the function
fails, or it succeeds and returns the next global state. Found in CompCert.
Inductive sres (state:Type) (A:Type): Type :=
| SError : errmsg→ sres state A
| SOK: A→ state→ sres state A.
Definition state_mon {state:Type} (A:Type) : Type := state→ sres state A.

Definition state_ret {state:Type} {A:Type} (x:A) : state_mon A :=
fun (s:state)⇒ SOK x s.

Definition state_bind {state:Type} {A B:Type} (f: state_mon A) (g:A→ state_mon B) : state_mon B :=
fun (s:state)⇒
match (f s) with
| SError msg⇒ SError msg
| SOK a s’⇒ g a s’
end.

7 23

Executable JIT
This is �ne to specify the primitives, but the actual JIT
should execute actual impure primitives.

State and Error Monads

State monads are perfect to specify functions with an e�ect on a global state. Either the function
fails, or it succeeds and returns the next global state. Found in CompCert.
Inductive sres (state:Type) (A:Type): Type :=
| SError : errmsg→ sres state A
| SOK: A→ state→ sres state A.
Definition state_mon {state:Type} (A:Type) : Type := state→ sres state A.

Definition state_ret {state:Type} {A:Type} (x:A) : state_mon A :=
fun (s:state)⇒ SOK x s.

Definition state_bind {state:Type} {A B:Type} (f: state_mon A) (g:A→ state_mon B) : state_mon B :=
fun (s:state)⇒
match (f s) with
| SError msg⇒ SError msg
| SOK a s’⇒ g a s’
end.

7 23

Executable JIT
This is �ne to specify the primitives, but the actual JIT
should execute actual impure primitives.

A Free Monad

Some parts of the JIT can be written in Coq, some can’t.
Let’s �nd a way to write in Coq exactly the parts we
want to extract to OCaml.
Free Monad: Representing programs where some
impure primitives have yet to be implemented.

Inductive free (T :Type) : Type :=
| pure (x : T) : free T
| impure {R}
(prim : primitive R) (next : R→ free T): free T.

With di�erent primitive implementations, the program
can be executed di�erently.

8 23

Our strategy for a verified executable impure JIT

The Free JIT
A Free JIT without primitive implementations.
Given speci�cations, de�ne small-step semantics.
Extract to OCaml with impure implementations.

Inspired by Free Monads, but adapted to �t the
simulation framework of CompCert.

9 23

Our strategy for a verified executable impure JIT

The Free JIT
A Free JIT without primitive implementations.
Given speci�cations, de�ne small-step semantics.
Extract to OCaml with impure implementations.

Inspired by Free Monads, but adapted to �t the
simulation framework of CompCert.

9 23

Free Monad Definitions - An Example

In that example, we want to write programs that can access a single global variable of type nat.

A list of primitives our programs can use:
Inductive primitive: Type→ Type :=
| Get : primitive nat
| Put (x:nat) : primitive unit.

We can then de�ne Free Monads:

Inductive free (T :Type) : Type :=
| pure (x : T) : free T
| impure {R}
(prim : primitive R) (next : R→ free T).

Fixpoint free_bind {X Y} (f: free X) (g: X→
free Y) : free Y :=
match f with
| pure x⇒ g x
| impure R prim next⇒
impure prim (fun x⇒ free_bind (next x) g)
end.

10 23

Free Monad Definitions - An Example

In that example, we want to write programs that can access a single global variable of type nat.

A list of primitives our programs can use:
Inductive primitive: Type→ Type :=
| Get : primitive nat
| Put (x:nat) : primitive unit.

We can then de�ne Free Monads:

Inductive free (T :Type) : Type :=
| pure (x : T) : free T
| impure {R}
(prim : primitive R) (next : R→ free T).

Fixpoint free_bind {X Y} (f: free X) (g: X→
free Y) : free Y :=
match f with
| pure x⇒ g x
| impure R prim next⇒
impure prim (fun x⇒ free_bind (next x) g)
end.

10 23

Giving Semantics to Free Monads - An Example

Given primitive implementations, we want to turn a free monad into an executable state monad. An
implementation is one state monad for each primitive:

Record monad_impl: Type :=
mk_mon_imp {

prim_get: state_mon nat;
prim_put: nat→ state_mon unit; }.

Definition exec_prim {R:Type} (p:primitive R)
(i:monad_impl) : state_mon R :=

match p with
| Get⇒ prim_get i
| Put x⇒ prim_put i x
end.

We can now give semantics to our Free Monads:
Fixpoint exec {A:Type} (f:free A) (i:monad_impl): state_mon A :=
match f with
| pure a⇒ state_ret a
| impure R prim cont⇒
state_bind (exec_prim prim i) (fun r:R⇒ exec (cont r) i)

end.

11 23

Giving Semantics to Free Monads - An Example

Given primitive implementations, we want to turn a free monad into an executable state monad. An
implementation is one state monad for each primitive:

Record monad_impl: Type :=
mk_mon_imp {

prim_get: state_mon nat;
prim_put: nat→ state_mon unit; }.

Definition exec_prim {R:Type} (p:primitive R)
(i:monad_impl) : state_mon R :=

match p with
| Get⇒ prim_get i
| Put x⇒ prim_put i x
end.

We can now give semantics to our Free Monads:
Fixpoint exec {A:Type} (f:free A) (i:monad_impl): state_mon A :=
match f with
| pure a⇒ state_ret a
| impure R prim cont⇒
state_bind (exec_prim prim i) (fun r:R⇒ exec (cont r) i)

end.

11 23

Executing Free Monads - An Example

Finally, we extract the JIT free monad to OCaml.
We can write a new way to execute free monads, calling impure primitives when needed.

(* impure primitives *)
let nm_exec_prim (p:’x primitive) : ’x =
match p with

| Get -> !global
| Put (n) -> global := n

(* executing free monads *)
let rec nm_exec (f:’A free) : ’A =
match f with
| Coq_pure (a) -> a
| Coq_ferror (e) -> print_error e; failwith "JIT crashed"
| Coq_impure (prim, cont) ->

let x = nm_exec_prim prim in
nm_exec (cont x)

12 23

Writing a JIT with a Free Monad

Every JIT component can be written as a Free Monad:

Definition optimizer (f:function) : free unit :=
do f_rtl← ret (IRtoRTL f);
do f_x86← ret (backend f_rtl); (* using CompCert backend *)
Prim_Install_Code f_x86.

C implementation

Calls an assembler to produce binary code.
Allocates writable memory with mmap.
Writes the binary code in that memory.
Makes the memory executable with mprotect.

13 23

Writing a JIT with a Free Monad

Every JIT component can be written as a Free Monad:

Definition optimizer (f:function) : free unit :=
do f_rtl← ret (IRtoRTL f);
do f_x86← ret (backend f_rtl); (* using CompCert backend *)
Prim_Install_Code f_x86.

C implementation

Calls an assembler to produce binary code.
Allocates writable memory with mmap.
Writes the binary code in that memory.
Makes the memory executable with mprotect.

13 23

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Reusing CompCert... and its proof

14 23

CompCert preserves the observable behavior of
the program.

CompCert as a JIT backend
Compiles whole programs (no arguments).
E�ects on the stack and heap should be
preserved too.

Make the generated code call the primitives. The
stack and heap are external, not part of the
CompCert memory model.

Compiling Function Calls
We have to go through the monitor.

Split the functions at calls.

Generating Native Code using Primitives

Generating Several RTL Programs
Generating RTL code that uses custom calling
conventions with our primitives.

Primitives are external calls.
Each RTL function returns to the
monitor.
One Continuation per Call instruction.

CompCert does not handle the heap and
stack. It interacts with it through primitive
calls.

15 23

Generating Native Code using Primitives

Generating Several RTL Programs
Generating RTL code that uses custom calling
conventions with our primitives.

Primitives are external calls.
Each RTL function returns to the
monitor.
One Continuation per Call instruction.

CompCert does not handle the heap and
stack. It interacts with it through primitive
calls.

15 23

Generating Native Code using Primitives

Generating Several RTL Programs
Generating RTL code that uses custom calling
conventions with our primitives.

Primitives are external calls.
Each RTL function returns to the
monitor.
One Continuation per Call instruction.

CompCert does not handle the heap and
stack. It interacts with it through primitive
calls.

15 23

Generating Natice Code using Primitives - An Example

Function Fun1 (reg1) :
reg2← Uplus 4 reg1
reg3← Call Fun7 (reg2)
reg3← Plus reg1 reg3
Return reg3

16 23

CoreIR Function

RTL Functions Assembler Continuation Function

Generating Natice Code using Primitives - An Example

Function Fun1 (reg1) :
reg2← Uplus 4 reg1
reg3← Call Fun7 (reg2)
reg3← Plus reg1 reg3
Return reg3

$1 () {
x8 = "Pop" ()
x9 = x8 + 4 (int)
x1 = "Push" (x8)
x1 = "Close" (1 , 2 , 10)
x1 = "Push" (x9)
x1 = "Push" (1)
x1 = "Push" (7)
x7 = RETCALL
return x7 }

$1 () {
x10 = "Pop" ()
x8 = "Pop" ()
x10 = x8 + x10
x1 = "Push" (x10)
x7 = RETRET
return x7 }

16 23

CoreIR Function RTL Functions

Assembler Continuation Function

Generating Natice Code using Primitives - An Example

Function Fun1 (reg1) :
reg2← Uplus 4 reg1
reg3← Call Fun7 (reg2)
reg3← Plus reg1 reg3
Return reg3

$1 () {
x8 = "Pop" ()
x9 = x8 + 4 (int)
x1 = "Push" (x8)
x1 = "Close" (1 , 2 , 10)
x1 = "Push" (x9)
x1 = "Push" (1)
x1 = "Push" (7)
x7 = RETCALL
return x7 }

$1 () {
x10 = "Pop" ()
x8 = "Pop" ()
x10 = x8 + x10
x1 = "Push" (x10)
x7 = RETRET
return x7 }

F i l e generated by CompCert 3 . 8
$1 :
leaq 32(%rsp) , %rax
movq %rax , 0(%rsp)
movq %rbx , 8(%rsp)
call _Pop
movq %rax , %rbx
call _Pop
lea l 0(%eax,%ebx , 1) , %edi
call _Push
movl $RETRET , %eax
movq 8(%rsp) , %rbx
addq $24 , %rsp
ret

16 23

CoreIR Function RTL Functions Assembler Continuation Function

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

From CoreIR to RTL: generate new calling conventions.

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

From CoreIR to RTL: generate new calling conventions.
A forward simulation is easier to prove.

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

From CoreIR to RTL: generate new calling conventions.
A forward simulation is easier to prove.
And can be used to prove a backward one.

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

From RTL to x86: use CompCert for the function and its continuations.

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

From RTL to x86: use CompCert for the function and its continuations.
Use the CompCert simulations to prove a simulation for the entire program.

Proving the Backend Optimizer: Simulations

17 23

To get behavior equivalence, we need to prove backward simulations (from CompCert).

We keep the original
version of F in case
of deoptimizations.

Theorem optimizer_correct:
∀ p p’, exec (optimizer p) = SOK p’→
backward_simulation p p’.

JIT Primitives

Output, Stack and Heap Primitives

Print
Pop and Push
MemSet and MemGet
Push and pop entire interpreter stackframes

Code Segment Primitives

Install a native function in the executable memory.
Load a function (or one of its continuations).
Check if a function has been compiled.

Running Native Code
We de�ne a special primitive to run native code.
Its speci�cation is a monad describing the small-step semantics of x86 code.

18 23

Can be called from
the native code.

JIT Primitives

Output, Stack and Heap Primitives

Print
Pop and Push
MemSet and MemGet
Push and pop entire interpreter stackframes

Code Segment Primitives

Install a native function in the executable memory.
Load a function (or one of its continuations).
Check if a function has been compiled.

Running Native Code
We de�ne a special primitive to run native code.
Its speci�cation is a monad describing the small-step semantics of x86 code.

18 23

Can be called from
the native code.

Bridging the gap between specification and implementation

What if there is a signi�cant distance between the monadic speci�cation and the impure
implementation?

19 23

Refinement with Implementation Simulation

20 23

Monadic Speci�cation (Coq)
A list of stackframe: its structure helps us write simulation invariants.

Record ASM_stackframe: Type := mk_sf {
caller: int;
next_pc: int;
retreg: int;
live_regs: list int }.

(* List of complete stackframes and
the incomplete one at the top *)

Definition stack: Type :=
list ASM_stackframe * list int.

Refinement with Implementation Simulation

20 23

Monadic Speci�cation (Coq)
A list of stackframe: its structure helps us write simulation invariants.

Record ASM_stackframe: Type := mk_sf {
caller: int;
next_pc: int;
retreg: int;
live_regs: list int }.

(* List of complete stackframes and
the incomplete one at the top *)

Definition stack: Type :=
list ASM_stackframe * list int.

Impure implementation (C)
Unstructured array that the native code can access.
int stack[STACK_SIZE];
int sp = 0;

Refinement with Implementation Simulation

20 23

Monadic Speci�cation (Coq)
A list of stackframe: its structure helps us write simulation invariants.

Record ASM_stackframe: Type := mk_sf {
caller: int;
next_pc: int;
retreg: int;
live_regs: list int }.

(* List of complete stackframes and
the incomplete one at the top *)

Definition stack: Type :=
list ASM_stackframe * list int.

An intermediate Monadic Speci�cation (Coq)
Unstructured speci�cation, closer to the C implementation.
Definition stack: Type := list int.

Impure implementation (C)
Unstructured array that the native code can access.
int stack[STACK_SIZE];
int sp = 0;

Refinement with Implementation Simulation

21 23

Refinement with Implementation Simulation

21 23

Refinement with Implementation Simulation

21 23

Refinement with Implementation Simulation

21 23

Refinement with Implementation Simulation

21 23

Refinement with Implementation Simulation

Theorem refines:
∀ prog i j
(R: implementation_simulation i j),
forward_simulation (monad_sem prog i) (monad_sem prog j).

21 23

Implementation Simulation: Splitting the Stack

Split Stack
Optimization proofs are easier to
conduct on a single mixed stack.
But stack primitives called from
the native code should only
interact with an array of integers.

22 23

Conclusion

A Free JIT

We can derive both small-step semantics and an executable OCaml JIT (ongoing).
Native code generation and execution are part of the formal model.
Each pure JIT component is properly speci�ed and proved.
Each impure component is speci�ed with a state monad.
A correctness proof of the JIT small-step semantics.
We reuse the simulation methodology of CompCert.
We reuse the simulation proof of CompCert’s backend (ongoing).

Trusted Code Base

Coq extraction to OCaml.
The primitive impure implementations correspond to their monadic speci�cations.
The call to the generated native code has been speci�ed with a free monad.

23 / 23

References

Barrière, Aurèle et al. (2021). “Formally veri�ed speculation and deoptimization in a JIT compiler”. In:
Proc. ACM Program. Lang. POPL.

Flückiger, Olivier et al. (2018). “Correctness of speculative optimizations with dynamic
deoptimization”. In: POPL.

Kumar, Ramana et al. (2014). “CakeML: a veri�ed implementation of ML”. In: Proceedings of POPL.
Leroy, Xavier (2006). “Formal certi�cation of a compiler back-end or: programming a compiler with a
proof assistant”. In: Proceedings of POPL.

Letan, Thomas and Yann Régis-Gianas (2020). “FreeSpec: specifying, verifying, and executing impure
computations in Coq”. In: Proceedings of the 9th ACM SIGPLAN International Conference on Certi�ed
Programs and Proofs, CPP.

Xia, Li-yao et al. (2020). “Interaction trees: representing recursive and impure programs in Coq”. In:
Proc. ACM Program. Lang. POPL.

Zhao, Jianzhou et al. (2012). “Formalizing the LLVM intermediate representation for veri�ed program
transformations”. In: Proceedings of the Symposium on Principles of Programming Languages,
POPL.

	Appendix

