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The NumPy* model of array programming

The good

● Easily embeddable (no need for a new 
language and compiler)

● Access to data parallelism (GPUs! TPUs!)

● Primitive set closed under automatic 
differentiation

* a.k.a.  APL model, MATLAB model, TensorFlow model, PyTorch model, JAX model

First-order array ops called from an interpreted host language

The bad
● Don't get to design a new language and 

compiler!

● Expressiveness
○ Fixed set of reductions
○ No sequential loops
○ Limited data types
○ Rectangular arrays only

● Clarity

○ Constrains program organization (e.g. 
loops forced inward)

○ Shape and indexing errors



type Point = (Real, Real)

avgPoints :: Point -> Point -> Point
avgPoints (x, y) (x', y') = (0.5 * (x + x'), 0.5 * (y + y'))

update :: d=>Point -> RNG -> Point -> Point
update points key x = avgPoints x points.(randIdx key)

runChain :: A n a. (RNG -> a -> a) -> RNG -> a -> n=>a
runChain f key x0 = scan' x0 (many f key)

trianglePoints :: 3=>Point
trianglePoints = [(0.0, 0.0), (1.0, 0.0), (0.5, sqrt 0.75)]

:plot runChain @3000 (update trianglePoints) 0 (0.0, 0.0)

⚠ Research use only! ⚠

Dex: a functional array language in the Haskell/ML family

github.com/google-research/dex-langmap : (a -> b) -> n=>a -> n=>b =

  \f x. for i. f x.i

gp_regression :: (a -> a -> Real) -> n=>a -> n=>Real -> a -> Real

gp_regression kernel xs ys x_test =

  gram.i.j = kernel xs.i xs.j

  cov.i = kernel xs.i x_test

  dot (solve gram cov) ys

dot : n=>Real -> n=>Real -> Real =

  \x y. sum (for i. x.i * y.i)

-- compare with Haskell:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

many :: (RNG -> a) -> RNG -> n=>a 

many f k = for i. f (hash k (asint i))

Goals
● Performance

● Parallelism

● Automatic differentiation

● Precise data modeling

Design choices
● Functional, static, strict

● Flat data, flat control

● Fine-grained effects

● Rich index types

https://github.com/google-research/dex-lang


Language



Function types, dually

Function Array

Potential deja'vu if you've heard of representable functors

Domain Arbitrary Finite (ordered)

Application Expensive, effectful Cheap

Construction Cheap Expensive, effectful

Elimination f expr f.expr

Introduction \x:ty. expr for x:ty. expr

Type a -> b a=>b



Quick examples

3d     : (Fin 3)=>Float

vector : (Fin n)=>Float (assuming n:Int in scope)

matrix : (Fin n)=>(Fin m)=>Float (assuming n:Int and m:Int in scope)

sum    : n:Type ?-> n=>Float -> Float

intIndexed : Int=>Float
> Type error! Couldn't synthesize (Ix Int)!



Syntax benchmark: matrix multiply

Dex
for i:(Fin n). for j:(Fin m). sum (for k:(Fin q). x.i.k * y.k.j)

for i:(Fin n) j:(Fin m). sum (for k:(Fin q). x.i.k * y.k.j)

for i j. sum (for k. x.i.k * y.k.j)

for i j. sum for k. x.i.k * y.k.j

SaC { [i,j] -> sum ({ [k] -> A[i,k] * B[k,j] }) }

NumPy matmul = lambda x, y: np.einsum('ik,kj->ij', x, y)

SOAC
combinator_matrix_multiply = \x y.

  yt = transpose y

  dot = \x y. sum (map (uncurry (*)) (zip x y))

  map (\xr. map (\yc. dot xr yc) yt) x



By the way: you can be as pointfree as you'd like!

def uncurry {a b c} (f:a -> b -> c) : (a & b) -> c = \(x, y). f x y
def zip {n a b} (x:n=>a) (y:n=>b) : n=>(a & b) = for i. (x.i, y.i)
def map {n a b} (f:a -> b) (x:n=>a) : n=>b = for i. f x.i
def transpose {n m a} (x:n=>m=>a) : m=>n=>a = for i j. x.j.i

def combinator_matrix_multiply {n k m}
    (x:n=>k=>Float) (y:k=>m=>Float) : n=>m=>Float =
  yt = transpose y
  dot = \x y. sum (map (uncurry (*)) (zip x y))
  map (\xr. map (\yc. dot xr yc) yt) x

A pointful foundation doesn't make pointfree programming harder!



Type system
Loop bound inferred from 
return type annotation

Very limited normalization 
applied to types

But not entirely 
trivial!

-- in lib/prelude.dx

def Fin   (n:Int) : Type = Range 0 n

def Range (low:Int) (high:Int) = …

x : (Fin 5) = …

i5  = 2 + 3

i5' = 2 + 3

broadcast 2.0 (Fin i5) + broadcast 2.0 (Fin i5')

> Type error! Expected (Fin i5)=>Float, but got (Fin i5')=>Float!

def broadcast {a} (v:a) (n: Type) [Ix n]: n=>a = for i. v

broadcast 2.0 (Fin 5)

> [2.0, 2.0, 2.0, 2.0, 2.0]



Sum and (dependent) product types

data Maybe a =
  Just a
  Nothing

data List a =
  MkList (length:Int) (elements:(Fin length)=>a)

def filter {n a} (f:a -> Bool) (x:n=>a) : List a = …

MkList _ validData = filter isValid data
sum validData



Can tensor programming be liberated from integer indices?

● Traditional array sizes are integers
● Traditional array indices are integers

● Dex array sizes are types
● Dex array indices are elements of that type



Rich index sets

interface Ix n where

  size n            : Int

  toOrdinal         : n -> Int

  unsafeFromOrdinal : Int -> n

def fromOrdinal {n} [Ix n] (o:Int) : Maybe n =

  case 0 <= o && o < size n of

    True  -> Just (unsafeFromOrdinal o)

    False -> Nothing

In Dex, any type conforming to Ix can be an array index:

Basic shape arithmetic can be done using standard type constructors:

Products (n & m)
Sums (n | m)
Exponentials   (n=>m)

size

& isomorphism with a prefix 
of natural numbers



Basic examples

Boundary 
conditions

x: (Fin (1 + n))=>a
x[0] vs x[1 + i]

x: (Unit|n)=>a
x.(Left ()) vs x.(Right i)

Named axes image[h, w] or image[w, h]? image.{height=h, width=w}
image.{width=w, height=h}

Concatenation concatenate x y
for ci. case ci of
  Left  xi -> x.xi
  Right yi -> y.yi

Reshapes reshape (2, -1, 4) x for i (j, k) l. x.i.j.k.l

(n & m)-typed binder

(n | m)-typed binder



Index sets for compilers

Integer-based indexing

nmp = n + m + p

for i in range(nmp).

  if i < n

    then x[i]

    else if i - n < m

      then y[i - n]

      else z[i - n - m]

  

Sum-type-based indexing

for i in (n|(m|p)).

  case i of

    Left ni -> x.ni

    Right i' -> case i' of

      Left  mi -> y.mi

      Right pi -> z.pi

A loop with a sum-typed index set either never inspects the 
index, or is a very good candidate for loop splitting!



Indexing lemmas

sequence : (Fin s)=>Int = …
for i in range(len(sequence)).
  sequence[len(sequence) - 1 - i]

def reflect {n} (i:n) : n =
  unsafeFromOrdinal n (size n - 1 - ordinal i)

sequence : n=>Int = …
for i.
  sequence.(reflect i)

Array reversal

x : (Fin s)=>Int = …
sumWithPrev = for i in range(len(x)).
  if i == 0
    then x[i]
    else x[i - 1] + x[i]

def prev (i:n) : (Unit|n) =
  unsafeFromOrdinal _ (ordinal i)

x : (Unit|n)=>Int = …
sumWithPrev = for i.
  case i of
    Left  () -> x.i
    Right i' -> x.(prev i') + x.i

Dynamic programming
Correctness 
reasoning requires 
non-local context 
(e.g. range of i)

Easy to forget about 
the base case and 
read out of bounds!



Index sets are user-definable
data RGB = Red | Green | Blue

instance Ix RGB 

  size = 3

  toOrdinal = \x. case x of

    Red   -> 0

    Green -> 1

    Blue  -> 2

  unsafeFromOrdinal = …

data HSV = Hue | Saturation | Value

instance Ix HSV …

Image = \h w colorSpace. { height: (Fin h) & width: (Fin w) }=>colorSpace=>UInt8

imgRGB : Image 200 200 RGB = loadKnownSizeJPG "doggo.jpg"

imgHSV : Image _   _   HSV = RGBtoHSV imgHSV

hues = for h w. imgHSV.{height=h, width=w}.Hue Arrays can function as named tuples



Relational/dataframe programming
CREATE TABLE airports (
  airport TEXT PRIMARY KEY,
  city    TEXT REFERENCES (cities))

CREATE TABLE flights (
  flight TEXT PRIMARY KEY,
  from   TEXT REFERENCES airports(airport),
  to     TEXT REFERENCES airports(airport))

SELECT city, count(*)
FROM flights JOIN airports
ON flights.from = airports.airport
GROUP BY city;

 city    |  count
Boston   | 50
Paris    | 71
...      | ...

airports : Airport=>{city:City}

flights : Flight=>{ from : Airport
                  , to   : Airport}

count : [Ix a, Ix b] (a=>b) -> (b=>Int)

numFlightsByCity : City=>Int =
  count $ for f:Flight.             
     airports.(((flights.f)~from))~city



Fencepost problems

data (n:Type) Gaps =

  UnsafeMakeGaps Int

instance Ix (Gaps n)

def leftEdge [Ix] (i:Gaps n) : n =

  UnsafeMakeGaps i' = i

  unsafeFromOrdinal i'

def RightEdge [Ix] (i:Gaps n) : n = ...

def leftGap [Ix] (i:n) -> Maybe (Gaps n) = ...

def RightGap [Ix] (i:n) -> Maybe (Gaps n) = ...

x
dx

def diffs (x: n=>Float) : (Gaps n)=>Float =

  for i. x.(RightEdge i) - x.(leftEdge i)

def applyDiffs (x0:Float) (dxs: (Gaps n)=>Float) : n=>Float =

  ...



Array type zoo

Array kind Example type

Static (Fin 10)=>(Fin 20)=>Float

Dynamic (Fin n)=>(Fin m)=>Float

Structured ragged (i:Fin 10)=>(...i)=>Float

Ragged (i:Fin 10)=>(Fin lengths.i)=>Float

Jagged (Fin 10)=>List Float

Homogeneous

Heterogeneous

Pushing the limits of
our type system here

🤔 If we have dependent functions… why don't we try dependent arrays?

Also:
Position-dependent arrays and their application for high performance code generation, F. Pizzuti et al.

Generating High Performance Code for Irregular Data Structures using Dependent Types, F. Pizzuti et al.



ADTs in scientific computing

type CT = Float

data PCRResult =

   Positive (Maybe CT)

 | Negative

 | Missing

data RawPCRResult =

   Biofire

 | Cobas { eGene :: CT

         , nGene :: CT}

 | Thermofisher { orfGene :: CT

                , eGene   :: CT

                , nGene   :: CT }

 | NoAmplification

 | ControlFailure

 | ParseError String



Implementation



Going deeper

Untyped surface syntax

Type inference 

Normalization to first-order

Optimizations

Automatic differentiation

Parallelization

Code generation

Our focus 
for now

Also: High-Performance Defunctionalisation in Futhark, A. K. Hovgaard et al.



Zooming into AD

reverse-mode AD = linearize + transpose1

1Decomposing reverse-mode automatic differentiation, R. Frostig et al.

transpose : (a -o b)      -> (b -o a)

Every linear transform has a transpose.

linearize : (a -> b) -> a -> (b, a -o b)

forward-mode AD ≈ linearize



Implementing linearization

linearize \x. x * y          ↦     \x. (x * y,
                                        \xt. x * xt + xt * y)

Multiplication

linearize \x. f (g x)        ↦     \x. (t, glin) = linearize g x
                                       (y, flin) = linearize f t
                                       (y, \xt. flin (glin xt))

Composition

linearize \x. for i. f x i   ↦     ???For loops

                                    \x. (for i. f (x, i),
                                         \xt. for i.
                                                snd (linearize f (x, i)) xt.i)

(rematerialize)

                                    \x. (ys, flins) = unzip (for i. linearize f (x, i))
                                        (ys, \xt. for i. flins.i xt.i)

(arrays of functions)



Normalizing arrays of functions

toFirstOrder : Nest Decl -> (Nest Decl, Substitution Name Atom)

Similar trick also works (and is needed!) for case expressions

↦

x = for i.
  v1 = …
  …
  vn = …
  atom

tmp = for i.
  fo1 = …
  …
  fom = …
  (a1, …, ak)

x ->
  view i.
    atom[reconSubst][a1,…,an/tmp.i]

toFirstOrder( ) )( ,
((fo1 = …; …; fom = …), reconSubst) = toFirstOrder (v1 = …; …; vn = …)

(a1, …, ak) = intersect (freeVars atom[reconSubst]) (fo1, …, fom)

Normalize block

Find first-order variables
sufficient for reconstruction

Can only:
(1) reference functions defined outside of for, or
(2) lambda expressions with body FVs.

Lambda for table type

Arbitrary atoms (incl. lambdas!)
First-order context



Going deeper

Untyped surface syntax

Type inference 

Normalization to first-order

Optimizations

Automatic differentiation

Parallelization

Code generation

This is why we have 
to loop here



Efficiency issues loom

???"xt[i] += zt"

\xt      . zt = xt * c
           zt

\zt. xt = zt * c
     xt

Scaling ↦

\(xt, yt). zt = xt + yt
           zt

\zt. xt = zt
     yt = zt
     (xt, yt)

Addition ↦

\xt      . zt = (xt, xt)
           zt

\zt. xt = fst zt
     xt = xt + snd zt
     xt

Duplication ↦

\xt      . zt = for i. xt
           zt

\zt. xt = sum zt
     xt

Broadcast ↦

\xt      . xt.iIndexing ↦



FP's unstated cost model: indexing is aliasing

We need to alias writes like we alias reads!

mat

vec = mat[i]

x = vec[i]

mat_ct

vec_ct = mat_ct[i]

vec[i] += x_ct



Transposition of indexing

1⃣ Imperative AD
store x_ct[i] ((load x_ct[i]) + y_ct)

2⃣ Dense updates
x_ct2 = x_ct + one_hot(y_ct, i)

3⃣ Sparse updates
x_ct2 = x_ct + sparse_one_hot(y_ct, i)

3⃣ Functional in-place (linear) updates
x_ct2 = consume_and_update(x_ct, i, y_ct)

❌ Unconstrained heap mutation

❌ Lots of wasted work, wrong asymptotics

❌ Unacceptable constant factors, difficult on GPUs

❌ Sequentializes code

5⃣ Associative accumulation effect
accumulate y_ct into x_ct[i]



Solution: effects

def sum {n} (x:n=>Float) : Float =
  (_, total) = withAccum \acc.
    for i.
      acc += x.i
  total

1Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

Differentiation through reductions over arbitrary monoids is non-trivial!1

def reduce {n a} (m:Monoid a) (x:n=>a) : a =
  (_, total) = withAccum m \acc.
    for i.
      acc o= x.i
  total

Arbitrary monoidal reductions

(Basic) Accumulation

def scan {n i o s eff}
    (f:i -> s -> {|eff} (o, s)) (init:s)
    (x:n=>i) : {|eff} n=>o =
  (result, final) = withState init \ref.
    for i.
      ref := f x.i (get ref)
  result

State

Accumulator cannot be read

Final value obtained once the 
accumulator cannot be 
modified



Efficient AD as a language design benchmark

1⃣ Closure under partial evaluation

2⃣ Closure under data-flow duality

Good reverse-mode autodiff support requires:

For example, reverse-mode AD of (parallel associative) scan is inefficient!1

1Parallelism-preserving automatic differentiation for second-order array languages, A. Paszke et al.

There exists a constant c such that for every program P the cost of 
evaluating P' (P' being derived using forward- or reverse-mode AD from P)

is at most c times larger than the cost of evaluating P.



Current / future work

● User-extensible (parallel-friendly) algebraic effects (see PEPM paper1)

● Monomorphization without complete inlining

● Typeclass system rework (embracing overlap!)

● Recursion and recursive ADTs

● Develop relational/dataframe programming further

● Make Dex fast!

● …

1Parallel Algebraic Effect Handlers, N. Xie, D. J. Johnson et al.



Thank you!

 


