
Hazel: a Separation Logic for effect handlers

Paulo Emílio de Vilhena and François Pottier

What is the problem?

● We want to formally verify programs exploiting effect handlers, that is,
we want to write specifications and verify that they are met.

● More specifically, we want to devise a program logic for effect handlers.

Why?

● Usefulness. To think in terms of specifications and reasoning rules is a valuable
tool; formal specification provides a precise program documentation.

● Gap. The literature on mechanized verification methods for programs that
combine effect handlers and mutable state is surprisingly scarce.

Specifying a concrete example

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

 type iter = (int -> unit) -> unit

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
 fun () ->
 match iter yield with
 | effect (Yield x) k ->
 Cons (x, continue k)
 | () ->
 Empty

Specifying a concrete example

A lazy sequence is a thunk that when
forced will either produce a marker of its
end or a pair of head and tail.

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

 type iter = (int -> unit) -> unit

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
 fun () ->
 match iter yield with
 | effect (Yield x) k ->
 Cons (x, continue k)
 | () ->
 Empty

Specifying a concrete example

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

 type iter = (int -> unit) -> unit

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
 fun () ->
 match iter yield with
 | effect (Yield x) k ->
 Cons (x, continue k)
 | () ->
 Empty

A higher-order iteration method is eager:
it iterates an input function over an
underlying collection of elements.

Specifying a concrete example

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

 type iter = (int -> unit) -> unit

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert (iter : iter) : sequence =
 fun () ->
 match iter yield with
 | effect (Yield x) k ->
 Cons (x, continue k)
 | () ->
 Empty

The function invert uses
Yield to stop the iterator.

Specifying a concrete example

The intuition: invert transforms an eager iteration method into a lazy sequence.

Can we state precisely what invert does?

1. What is iter? (Precondition)

2. What is sequence? (Postcondition)

3. What elements are covered by the result of invert? (Correctness)

4. Does invert perform effects? (Safety)

 val invert : iter -> sequence

Specifying a concrete example

∀iter xs.
 isIter iter xs ∗ ewp (invert iter)〈⊥〉{k. isSeq k xs}

Formal specification

(Precondition) iter iterates a
given function through the

elements of the list xs.

The program invert iter can be
executed, it won't perform effects and

...

… (Postcondition) if it terminates, then
it returns a sequence k that produces

the elements xs.

With a formal specification we can:

Remainder of the talk

● Application of Hazel.
We are going to study invert in detail:
○ Definition of isIter.
○ Definition of isSeq.
○ Proof of invert.

● Presentation of Hazel.
We give a broad overview of the project and we present
the key ideas to specify and verify programs in our system.

Presentation of Hazel

Structure of the Hazel project

The Coq Proof Assistant

Hazel

Iris

HH
Programming
language

● Iris.
A Separation Logic: standard logical connectives,
separating conjunction (), magic wand () and some
modalities (later ▷, persistently ☐, etc.).

● HH Programming language.
A subset of Multicore OCaml restricted to
Heaps and Handlers.

∗ ∗

Why separation logic?
SL provides local reasoning about the state.

Why Iris?
Iris is expressive, that is, many verification tasks can be
carried out without ad hoc extensions.

Hazel's main feature: to generalize specifications

P ∗ wp e {Q}
Traditional
specification in
separation logic

● P is the precondition.
It must hold before the execution of the
program.

● Q is the postcondition.
It holds upon termination.

Hazel's main feature: to generalize specifications

P ∗ wp e {Q}
Traditional
specification in
separation logic

P ∗ ewp e〈Ψ〉{Q}Specification in
Hazel

● P is the precondition.
It must hold before the execution of the
program.

● Q is the postcondition.
It holds upon termination.

● Ψ is the protocol.
It describes the effects that e might
throw during its execution.

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Empty protocol: ⊥

● Base protocol: !x (Eff v) {P}. ?y (w) {Q}

● Protocol sum: Ψ1 + Ψ2

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Empty protocol: ⊥

The empty protocol describes the absence of effects.

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Empty protocol: ⊥

The empty protocol describes the absence of effects.

∀ iter xs.
 isIter iter xs ∗
 ewp (invert iter)〈⊥〉{k. isSeq k xs}

ewp (ref 0)〈⊥〉{r. r ↦ 0}

ewp (let r = ref 1 in !r + !r)〈⊥〉{y. y = 2}

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Base protocol: !x (Eff v) {P}. ?y (w) {Q}

It captures the intuition that performing an effect can be thought of as calling a function.

It assigns a precondition P and a postcondition Q to an effect.

The value v is the effect argument and w is the value expected in return.

The variables x and y are binders.

Complete intuitive reading:
"For every x, if the program performs an effect with argument v in a state satisfying P,
it can expect that there exists y such that the return value is w and the state satisfies Q."

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Base protocol: !x (Eff v) {P}. ?y (w) {Q}

True ∗ ewp (perform (Abort ()))〈ABORT〉{_. False}

effect Abort : unit -> 'a

ABORT = !_ (Abort ()) {True}. ?y (y) {False}

GET = !x (Get ()) {currSt x}. ?_ (x) {currSt x}

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Base protocol: !x (Eff v) {P}. ?y (w) {Q}

currSt 1 ∗
 ewp (let x = perform (Get ()) in x + x)〈GET〉
 {y. y = 2 ∗ currSt 1}

effect Get : unit -> int

Syntax of protocols

Ψ ::= ⊥ | !x (Eff v) {P}. ?y (w) {Q} | Ψ + Ψ

● Protocol sum: Ψ1 + Ψ2

It describes effects that abide by either Ψ1 or Ψ2.

currSt 0 ∗
 ewp (let _ = perform (Set 1) in
 let x = perform (Get ()) in x + x)〈GET + SET〉
 {y. y = 2 ∗ currSt 1}

GET = !x (Get ()) {currSt x}. ?_ (x) {currSt x}
SET = !x y (Set y) {currSt x}. ?_ (()) {currSt y}

ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Empty-Protocol-Rule)

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

(Empty-Protocol-Rule) ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

(Empty-Protocol-Rule) ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

(Empty-Protocol-Rule) ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

(Empty-Protocol-Rule) ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)
We must prove the
precondition P.

Explaining protocols with reasoning rules

ewp (perform (Eff v))〈⊥〉{Q}

False

(Empty-Protocol-Rule) ewp (perform (Eff v))〈Ψ1〉{Q} ⋁
ewp (perform (Eff v))〈Ψ2〉{Q}

ewp (perform (Eff v))〈Ψ1 + Ψ2〉{Q}

(Protocol-Sum-Rule)

∃x. v' = v ∗ P ∗ (∀y. Q ∗ R(w))

ewp (perform (Eff v'))〈!x (Eff v) {P}. ?y (w) {Q}〉{R}

(Base-Protocol-Rule)
We can assume the
postcondition Q to prove the
continuation of the program.

Local reasoning about stateful programs

(Frame-Rule)

P ∗ ewp e〈Ψ〉{Q}

(P ∗ R) ∗ ewp e〈Ψ〉{y. Q(y) ∗ R}

● Remarks.
This is a central rule in Separation Logic.

It captures the intuition that different components of a software application can be
analysed separately if they do not alter the same data structures.

This rule holds in our system because we are restricted to one-shot continuations.

Context-local reasoning

(Bind-Rule)

ewp e〈Ψ〉{y. ewp N[y]〈Ψ〉{Q}}

ewp N[e]〈Ψ〉{Q}

N is a neutral context

● Remarks.
A neutral context does not contain handlers.

This rule states that we can reduce the verification
of a big program into simpler verification tasks.

Context-local reasoning

(Sequencing-Rule)

ewp e1〈Ψ〉{_. ewp e2〈Ψ〉{Q}}

ewp (e1 ; e2)〈Ψ〉{Q}

● Remarks.
We apply the Bind-Rule (with N := []; e2) to reason about the program (e1; e2).

Notice that the protocol Ψ is duplicated: a protocol in Hazel is always repetitive.

Context-local reasoning

(Sequencing-Rule)

ewp e1〈Ψ〉{_. ewp e2〈Ψ〉{Q}}

ewp (e1 ; e2)〈Ψ〉{Q}

● Remarks.
We apply the Bind-Rule (with N := []; e2) to reason about the program (e1; e2).

Notice that the protocol Ψ is duplicated: a protocol in Hazel is always repetitive.

Local reasoning about effectful programs

(Handler-Rule)

ewp e〈Ψ1〉{Ф1}

ewp (match e with effect (Eff v) k -> h v k | v -> r v)〈Ψ2〉{Ф2}

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2}

● Remarks.
The client e can be verified in isolation.

The intuition is that the protocol Ψ1 serves as a boundary between client and handler.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

The assumption that
the client performs
effects that abide by
the protocol Ψ1.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

The assumption that
the client performs
effects that abide by
the protocol Ψ1.

We can identify the
permission to call the
continuation.

Local reasoning about effectful programs

isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ2〉{Ф2} ≜

(∀y. Ф1(y) ∗ ewp (r y)〈Ψ2〉{Ф2})

(∀v k.

 ewp (perform (Eff v))〈Ψ1〉{w. ∀Ψ' Ф'.

 ▷ isHandler〈Ψ1〉{Ф1} (h | r)〈Ψ'〉{Ф'} ∗

 ewp (continue k w)〈Ψ'〉{Ф'}} ∗

 ewp (h v k)〈Ψ2〉{Ф2})

 ⋀

(Return branch)

(Effect branch)

The predicate isHandler is how we specify a handler.

The assumption that
the client performs
effects that abide by
the protocol Ψ1.

The predicate isHandler
reappears as a proof
obligation because a deep
handler is reinstalled when
we call the continuation.

Application of Hazel

Application of Hazel to the verification of invert

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

 type iter = (int -> unit) -> unit

 val invert : iter -> sequence

∀iter xs.
 isIter iter xs ∗ ewp (invert iter)〈⊥〉{k. isSeq k xs}

Specification
of invert

Now, we prove that invert satisfies its specification.

Application of Hazel to the verification of invert

 type iter = (int -> unit) -> unit

isIter iter xs ≜

 ∀f I.

 ☐ (∀us u. I(us) ∗ wp (f u)〈Ψ〉{_. I(us ++ [u])}) ∗

 I([]) ∗ wp (iter f)〈Ψ〉{_. I(xs)}

The abstract predicate I is the loop invariant: "If f can take one step, then iter can take xs steps."

Application of Hazel to the verification of invert

 type iter = (int -> unit) -> unit

isIter iter xs ≜

 ∀f I Ψ.

 ☐ (∀us u. I(us) ∗ ewp (f u)〈Ψ〉{_. I(us ++ [u])}) ∗

 I([]) ∗ ewp (iter f)〈Ψ〉{_. I(xs)}

The abstract predicate I is the loop invariant: "If f can take one step, then iter can take xs steps."

The abstract protocol Ψ means that iter is effect-polymorphic:

1. iter does not introduce effects.

2. iter does not handle effects that f may throw.

Application of Hazel to the verification of invert

 type sequence = unit -> head
 and head = Empty | Cons of int * sequence

isSeq' k us vs ≜ ewp (k ())〈⊥〉{y. isHead y us vs}

isHead y us vs ≜ match y with

 | Empty ⇒ vs = []

 | Cons (u, k) ⇒ ∃vs'. vs = u :: vs' ∗ ▷ isSeq' k (us ++ [u]) vs'

 end

isSeq k xs ≜ isSeq' k [] xs

Remarks:

1. A sequence does not throw effects; it is specified under the protocol ⊥.

2. A sequence is ephemeral; The weakest precondition ewp is an affine assertion.

Application of Hazel to the verification of invert

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
 match iter yield with
 | effect (Yield x) k -> Cons (x, continue k)
 | () -> Empty

We covered the definitions, now we study the main ingredients of the proof:

1. To introduce an assertion describing the state of the handler.

2. To introduce a protocol for the effect Yield.

Application of Hazel to the verification of invert

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
 match iter yield with
 | effect (Yield x) k -> Cons (x, continue k)
 | () -> Empty

We covered the definitions, now we study the main ingredients of the proof:

1. To introduce an assertion describing the state of the handler.

2. To introduce a protocol for the effect Yield.

Application of Hazel to the verification of invert

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
 match iter yield with
 | effect (Yield x) k -> Cons (x, continue k)
 | () -> Empty

What is the state of the handler?

The state of the handler is the set of elements already seen.

The handler doesn't store these elements; there is no mutable state.

These elements are stored in a ghost cell.

The ghost state

True ∃γ. clientStγ [] ∗ handlerStγ []

clientStγ us ∗ handlerStγ vs ∗ us = vs

clientStγ us ∗ handlerStγ us

∗

∗ clientStγ (us ++ [u])
handlerStγ (us ++ [u])

(Introduce)

(Confront)

(Update)

We can think of γ as a reference to the elements the handler has already seen.

The assertions clientStγ us and handlerStγ us mean the same thing: that the state of γ is us.

clientStγ is passed to iter as the loop invariant, while handlerStγ is kept by the handler.

The handler can update γ only when both assertions are available.

Note: ghost state is a recurrent verification technique also known as history variables.

Application of Hazel to the verification of invert

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
 match iter yield with
 | effect (Yield x) k -> Cons (x, continue k)
 | () -> Empty

We covered the definitions, now we study the main ingredients of the proof:

1. To introduce an assertion describing the state of the handler.

2. To introduce a protocol for the effect Yield.

Application of Hazel to the verification of invert

 effect Yield : int -> unit
 let yield x = perform (Yield x)

 let invert iter = fun () ->
 match iter yield with
 | effect (Yield x) k -> Cons (x, continue k)
 | () -> Empty

The effect Yield u adds one element to the set of elements seen by the handler:

YIELD = !us u (Yield u) {clientStγ us }.
 ?_ (()) {clientStγ (us ++ [u])}

Application of Hazel to the verification of invert

clientStγ [] ∗
 ewp (iter yield)〈YIELD〉
 {_. clientStγ xs}

(clientStγ [] ∗ handlerStγ []) ∗
 ewp (match iter yield with
 | effect (Yield x) k -> h x k
 | () -> r ()) 〈⊥〉{y. isHead y [] xs}

handlerStγ [] ∗
 isHandler〈YIELD〉{_. clientStγ xs}
 (h | r)
 〈⊥〉{y. isHead y [] xs}

After unfolding some definitions we reach the heart of the proof:

The claim that the handler produces a head for the complete list xs.

At this point, we introduce γ to keep track of the state of the handler.

Then, we apply rule Handler-Rule.

(Handler-Rule)

Application of Hazel to the verification of invert

To sum up.

1. We have seen the definition of isIter.

2. We have seen the definition of isSeq.

3. We have introduced the predicates clientStγ and handlerStγ.

4. We have introduced the protocol YIELD.

5. We have considered the main step of the proof where we apply the Handler-Rule.

Remark.
Thanks to the paper "A Modular Way to Reason About Iteration" by Filliâtre and Pereira,

we can generalize the specification of invert to iteration methods of arbitrary collections.

Conclusion

Conclusion

● The notion of protocols allows local reasoning about effectful programs.

● We have introduced Hazel: a Separation Logic for effect handlers.

● The logic preserves local reasoning about stateful programs.

● The logic is built on top of Iris and mechanized in Coq.

● We have seen the application of Hazel to the verification of invert.

Questions?

Application of Hazel to the verification of invert

clientStγ [] ∗
 ewp (iter yield)〈YIELD〉
 {_. clientStγ xs}

First proof obligation

To dispatch the first proof obligation, we specialize the assertion isIter iter xs.

We instantiate the protocol Ψ with YIELD and the invariant I with clientStγ.

Recall the definition of isIter:

isIter iter xs ≜ ∀f I Ψ.

 ☐ (∀us u. I(us) ∗ ewp (f u)〈Ψ〉{_. I(us ++ [u])}) ∗

 I([]) ∗ ewp (iter f)〈Ψ〉{_. I(xs)}

Application of Hazel to the verification of invert

Second proof obligation

handlerStγ [] ∗
 isHandler〈YIELD〉{_. clientStγ xs}
 (h | r)
 〈⊥〉{y. isHead y [] xs}

First, we generalize the assertion so that we reason about an arbitrary intermediate step

of the handler, rather than the initial one:

 handlerStγ us ∗
H ≜ ∀us vs. isHandler〈YIELD〉{_. clientStγ (us ++ vs)}
 (h | r)
 〈⊥〉{y. isHead y us vs}

The proof then follows by Löb induction (a deep handler is recursively defined):

▷ H ∗ H

