
Back to the 90s!

Fast Indexing for Search by Types

Clément Allain Gabriel Radanne Laure Gonnord

1/22



Problem

Every programmer has encountered this problem once:
I’m looking for a function that does X, where to find it?

Often there is an “intuitive” approach: I want a function on time, I look in the Time module.
This does not always work (auxiliary modules . . . ).

⇒ We can search functions using a very familiar abstraction: their types!

2/22



Our tool: Dowsing!

• Finds types “up to” order of arguments, instantiation, . . .
• Knows about packages/libraries
• Scales to modern ecosystems (for instance, opam)

$ search "'a list * 'a -> bool"

...

List.mem : 'a -> 'a list -> bool

...

$ search "'a list -> ('a * 'b -> 'b) -> 'b -> 'b"

...

List.fold_left :

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right :

('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

...

How does it all work ?

3/22



Our tool: Dowsing!

• Finds types “up to” order of arguments, instantiation, . . .
• Knows about packages/libraries
• Scales to modern ecosystems (for instance, opam)

$ search "'a list * 'a -> bool"

...

List.mem : 'a -> 'a list -> bool

...

$ search "'a list -> ('a * 'b -> 'b) -> 'b -> 'b"

...

List.fold_left :

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_right :

('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

...

How does it all work ?

3/22



Existing approaches

Search by type modulo isomorphism:

• Sound and complete 4

• Computationally intensive 8

Hoogle (https://hoogle.haskell.org/):

• Neither sound nor complete (more like “text search in types”) 8

• Scales well 4

4/22

https://hoogle.haskell.org/


Search by type modulo isomorphism

Given a type τ , finds all functions in the libraries with types
which are equivalent/match/unify to τ up to some set
of “simplifications”.

We consider the following simplifications (i.e., isomorphisms):

a× b ≡T b × a (×-comm)

a× (b × c) ≡T (a× b)× c (×-assoc)
unit× a ≡T a (×-unit)

(a× b)→ c ≡T a→ (b → c) (curry)

Problem: Unification/Matching modulo isomorphism is expensive.

5/22



Smart indexing

Some remarks:

• When searching, many types do not match

• Even when failing, unification is expensive

• Performance of unification highly depends on the types (more than ∗1000 variance)

Battle plan:

1. Experimentally measure to identify types taking lots of time

2. Introduces “shortcuts”, to skip unification for these expensive types

3. Pre-process the database of types to compute shortcuts in advance

4. Rinse and repeat

6/22



Smart indexing

Some remarks:

• When searching, many types do not match

• Even when failing, unification is expensive

• Performance of unification highly depends on the types (more than ∗1000 variance)

Battle plan:

1. Experimentally measure to identify types taking lots of time

2. Introduces “shortcuts”, to skip unification for these expensive types

3. Pre-process the database of types to compute shortcuts in advance

4. Rinse and repeat

6/22



First metric: Number of unique variables

Exemples:

• vars(α→ α) = 1
• vars((α→ β → α)→ α→ list(β)→ α) = 2

stats "int -> int -> int" -measure unique-vars

vars total time (ms) avg. time (µs) nb. unif.
0 53.8554 1.28044 42060
1 76.8702 8.60038 8938
2 68.7156 18.6575 3683
3 10.241 9.16014 1118
4 3.55721 12.3514 288

Observations:

• 75% unifs/ 25% time without any variables
• Unification on polymorphic type is harder

7/22



Second of metric: The head

Exemples:

• head(unit → α) = var
• head(int → int → list(α)) = conslist

stats "int -> int -> int" -measure head

vars total time (ms) avg. time (µs) nb. unif.
variable 88.8178 39.7218 2236

constructor 80.8148 1.77701 45478
tuple 16.0539 1.91574 8380
other 0.442982 1.91767 231

Observations:

• 95% with a simple constructor at the head
• Case with variable head are pathological

8/22



Metrics

We have many other metrics. It’s very easy to implement new ones.

Preliminary conclusions:

• Cheap cases (no variables, simple head, . . . )
⇒ Still many of them, Easy to skip

• Expansive cases (Too many variables, lot’s of sharing)
⇒ Hard to skip, but skips are very worthwhile

9/22



Unification criterion

We are looking for criterions that are necessary (but not sufficient!).

A criterion is composed of:

• A domain of values D

• encode : Types → D

• compat : D × D → Bool

• τ1 ≡T τ2 =⇒ compat(encode(τ1), encode(τ2))

We thus get a filter!
¬(compat(encode(τ1), encode(τ2))) =⇒ τ1 6≡T τ2

10/22



Unification criterion

We are looking for criterions that are necessary (but not sufficient!).

A criterion is composed of:

• A domain of values D

• encode : Types → D

• compat : D × D → Bool

• τ1 ≡T τ2 =⇒ compat(encode(τ1), encode(τ2))

We thus get a filter!
¬(compat(encode(τ1), encode(τ2))) =⇒ τ1 6≡T τ2

10/22



Unification criterion – Head matching

If two types have incompatible heads, they can never unify:

• · · · → int 6≡T · · · → float

• · · · → list(α) 6≡T · · · → int × int

• · · · → int
?≡T · · · → α

We precompute the heads for all types in the database and store them compactly

11/22



Unification criterion – Head matching – benchmarking

Searching in a local install of opam:
∼ 250 packages, 31578 functions

Type Nb unif. w shortcut Gain
int → int → int 2714 91.4%

int → int → int → int 2714 91.4%
int → (int → int) → list(α) 2945 90.7%
int → float → bool → unit 5745 81.8%

α → int → unit 5745 81.8%
int → int → α 31578 0%

• We correctly avoid many unifications

• We need to work more for polymorphic queries

12/22



Unification criterion – Multiplicity

If multiplicities are incompatible, types can never unify:

int → int → int 6≡T multiplicity = 2
int → float multiplicity = 1

int → int 6≡T multiplicity = 1
int → int → α→ α multiplicity ≥ 2

int → (unit→ unit)→ unit 6≡T multiplicity = 2
int → (int→ float)→ int → α multiplicity ≥ 3

int → list(β)→ int
?≡T multiplicity = 2

int → α multiplicity ≥ 1

13/22



Unification criterion – Multiplicity – benchmarking

Searching in a local install of opam:
∼ 250 packages, 31578 functions

Type Nb unif. w shortcut Gain
int → int → int 121 99.62%

int → int → int → int 107 99.66%
int → (int → int) → list(α) 141 99.55%
int → float → bool → unit 126 99.6%

α → int → unit 2443 92.26%
int → int → α 3677 88.36%

• Combined with the previous criterion!

• Now decent at polymorphic queries

14/22



More shortcuts and combinations

We introduced more shortcuts and plan to investigate even more (for instance, the relative
positions of variables)

How to combine them?
We use a trie-like structure of “features”.

15/22



Unification criterions – combination

Updated criterion:

• A domain of values D

• compat : D × D → Bool

• . . .

• An order on D such that compat is monotonous

A trie of criterions:
• Given some criterions, we associate types to words in Di

• The database is stored as a trie of words

• Given a query (here, a constructor f ), we recursively
select all sub-tries with potentially valid types.

16/22



Dowsing – In the trenches

Some practical details on the implementation:

• Types are obtained by crawling the cmis

• Types are turned into a normal form
• Application is n-ary
• Arguments are sorted and tuples are merged
• Hash-consing everywhere

• Memory representation/storage of the database not optimized so far (marshal)

• Full modified AC-unification implemented for the “SML” fragment, using the Boudet
Algorithm

• A fairly creative stacked-functor design for the trie with heterogeneous words

17/22



Final benchmark

Benchmark on database containing containers, batteries and base:
∼ 10000 functions

Type Nb unif. w shortcuts Time (ms)
int → int → int 50 0.368ms

int → int → int → int 45 0.649ms
int → (int → int)→ list(α) 67 0.415ms
int → float → bool → unit 62 1.26ms

α→ int → unit 62 0.592ms
int → int → α 29 0.393ms

list(α)→ _→ α 642 391ms

⇒ Instant in practice for many queries. Still work to do on very polymorphic queries

18/22



Ongoing and Future work – Indexing

We believe we can push indexing much further!

• Add new measures and appropriate criterions

• Find other ways to shortcut unification

• Proper serialization format for the database

Example of shortcut we do not exploit yet:

• Given τ1 more general than τ2, if another τ unifies with τ2, it also unifies with τ1.
We can compute the “more general” semi-lattice in advance, and use it to avoid
unifications.

19/22



Ongoing and Future work – Type system and Unification

Still many holes to fill on the type system and unification aspect

• We only cover the SML fragment. We are still missing polymorphic variants, objects, first
class modules, (modular explicits), . . .
Make a Bet: Is everything still decidable?

• Type aliases are unfolded eagerly right now. Can we do better?

• The unification procedure is reasonably efficient, but not highly tuned.
⇒ In particular, we really want early exit

Additional ideas:

• Search type declarations modulo isomorphism

• Consider isomorphic algebraic data types

• Look at modules . . .

20/22



Ongoing and Future work – Software Development

There is also quite a lot of dev to do:

• Reuse the odoc infrastructure

• Plug this into opam CI

• Develop a web-based frontend

21/22



Conclusion

We presented Dowsing, a new approach to search in libraries by
types:

• Sound and complete

• Scales well to medium ecosystem (and beyond?)

• Good methodological approach to improve it further

Our technique is formalized and implemented:
https://github.com/Drup/dowsing

Still lot’s of work to do to make this practical!

22/22

https://github.com/Drup/dowsing

