Deductive verification of programs with
Rust-style typing

Xavier Denis

Université Paris-Saclay, CNRS, Inria,
Laboratoire de Recherche en Informatique, 91405, Orsay, France.

November 23, 2020

Motivation

> We need to use pointers, and also reason about them.
» C-style pointers are too powerful.
» Introduce issues: uninitialized memory, aliasing

» Makes reasoning highly complex.

Overwriting memcpy

void memcpy(char * src, char * dest, int len) {
for(int i = 0; i < len; i++) dest[i] = srcl[il

}

What happens if src and dest overlap?

Overwriting memcpy

void memcpy(char * src, char * dest, int len) {
for(int i = 0; i < len; i++) dest[i] = srcl[il

}

What happens if src and dest overlap?

1=1
Lt [238]--] k]
L f
1 =2
Lt [v 3]]k |
[1
1=3
Lt v v]k

Ownership in Rust

In Rust, every cell of memory has a unique owner.
This turns the heap into a forest.
Rust adds borrows, a form of pointers with a static lifetime.

Safety of borrows is checked statically by compiler.

vVvYyyVvyy

This typing discipline gives Rust (manual) memory safety

Borrows & Lifetimes

Mutability XOR Sharing

» Mutable borrows are exclusive, but can be turned into
shareable immutable borrows.

» Borrows are implemented as pointers.
> A borrow must be released by the end of its lifetime.

Borrows & Lifetimes

b2 gmut, a |

a is frozen until the end of «, even if b is freed early.

Borrows & Lifetimes

fn memcpy(src: &mut [u8], dst: &mut [u8]) {
for (s, d) in src.iter_mut().zip(dst.iter()) {
*s = *xd

3

fn main () {
let mut x = vec![1,2,3,4,5];
let y = &mut x[0..3];
let z = &mut x[1..4];
memcpy (y, z)
}

4 4

error [E0499]: cannot borrow ‘x‘ as mutable more

than once at a time

Contributions

» Based on work of RustHorn (ESOP 2020)

» Deductive verification by translation to functional language for
Rust-style languages.

» Proof of safety using original simulation approach between
traces and configurations.

» Implemented this translation as a proof-of-concept extension
to the Rust compiler targeting Whys3.

Starting Point

Mini Mir, Mini Prix.
Mais il fait le Maximum.

Source: MiniMir, a kernel for
languages with borrows

Target: Functional language with
any/assume non-determinism
and assertions.

any/assume non-determinism

let x = any in

let y = x + 1 in
assume { 1 <=y };
let z =y + x + 2 in

assert { z >= 3 }

Translating

Translating borrows

Mutable borrows are translated to a pair of values: the current and
final value that we divine at the creation of a borrow.

b2 mut, a I

During «, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after «.

Translating

Translating borrows

Mutable borrows are translated to a pair of values: the current and
final value that we divine at the creation of a borrow.

let b

* any } in
let a = b in

I

y ™
1

s

)

1

in

I
()

let b = { b with *
assume { *x b = "~ b }

During «, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after «.

Example: Mutating a reference

fn main () {
let mut x

let y = &mut x

* y = 15;

assert_eq! (x,

x := 10;

y &mut, x;
t1 := 15;

to @ &mut, ti;
swap(y, t2);
drop (t9);

drop (y);
thaw «;
ty = X
assert _3;
ty = ():
return _4;

I
-
(2]

Example: Mutating a reference

x := 10;

y := &mut, x;
t1 := 15;

tg := &mut, ti;
swap (y, t2);
drop (t9);
drop(y);

thaw «;

ty := x = 15;
assert _3;

tg = O);
return _4;

Example: Mutating a reference

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {x = x, ° = anyl} in
t; := 15; let x = 7 y in

tg := &mut, ti; let t; = 15 in

swap (y, t2); let to = {* = s, ~ = anyl} in
drop (t2); let t1 = ~ t9 in

drop (y); let t = * to in

thaw o; let to = {ty with * = x y} in
ty := x = 15; let y = {y with * = t} in
assert _3; assume { * ty = = t9 };

tg = O assume { * y = "~y };
return _4; assert { x = 15 }

Example: Mutating a reference

) Environment
let rec main () =

let x = 10 in x =10
let y = {x = x, ° = any} in

let x = ~ y in

let ¢ = 15 in

let to = {* = s, °~ = any} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * 1y = " 3 };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in x =10

let y = {*x = x, ~ = any} in vy = {10, v}

let x = ~ y in

let t; = 15 in

let to = {* = s, °~ = any} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

) Environment
let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}
let x = ° y in

let ¢ = 15 in

let to = {* = s, °~ = any} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * 1y = " 3 };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

) Environment
let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}
let x = "~ y in t1 = 15

let ¢t = 15 in

let to = {* = s, °~ = any} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * 1y = " 3 };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}

let x = "~ y in i1 = 15

let ¢, = 15 in tz = {15, vz}

let t3 = {* = s, ~ = anyl} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}

let x = "~ y in t1 = v2

let ¢, = 15 in ty = {15, va}

let to = {* = s, °~ = any} in

let &1 = ~ t2 in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

) Environment
let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}
let x = "~ y in 1 = v2

let t; = 15 in ta = {15, va}
let t9 = {*x = s, ~ = any} in t =15

let t; = to in

let t = * {2 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * 1y = " 3 };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {10, ui}

let x = "~ y in 1 = v2

let ¢, = 15 in tz = {10, vz}

let tg = {*x = s, ~ = any} in t =19

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥y = {15, v1}

let x = "~ y in i1 = v

let ¢, = 15 in ty = {10, va}

let tg = {*x = s, ~ = any} in t =19

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {15, ui}

let x = "~ y in 1 = v2

let ¢, = 15 in ty = {10, va}

let tg = {*x = s, ~ = any} in t =15

let ¢ = t2 in Equalities

let t = * 19 in

let fp = {fy with * = x y} in 10 = v2

let y = {y with * = t} in

assume { * to = " to };

assume { *x y = " y };
assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {15, ui}

let x = "~ y in 1 = v2

let ¢, = 15 in ty = {10, va}

let tg = {*x = s, ~ = any} in t =15

let ¢ = t2 in Equalities

let t = * 19 in

let to = {ty with * = x y} in 10 = vy

let y = {y with * = t} in 15 = v

assume { * to = " to };

assume { *x y = ~ y };

assert { x = 15 }

Example: Mutating a reference

Environment

let rec main () =

let x = 10 in X =1

let y = {* = x, ~ = any} in ¥ = {15, ui}

let x = "~ y in 1 = v2

let ¢, = 15 in ty = {10, va}

let tg = {*x = s, ~ = any} in t =15

let ¢ = t2 in Equalities

let t = * 19 in

let to = {ty with * = x y} in 10 = vy

let y = {y with * = t} in 15 = u

assume { * to = " to };

assume { *x y = " y };

assert { x = 15 }

Safety

Theorem (Safety)
Given a well-typed MiniMir program & P, if [P] is safe, then P is
safe.

To prove this we establish a simulation between MiniMir traces
and anyML configurations.

Preservation

Lemma (Progress)

Given a MiniMir trace © = C' =%, C' and a anyML configuration
such that C' ~p K, if K is not stuck then C is not stuck.

Lemma (Preservation of Simulation)

Given a MiniMir trace © = C' =, C' and a anyML configuration
K such that © ~p K, if C —p C", there exists a K' such that
K — K' and C" =% C' ~p K'.

Simulation

» The simulation ~p gives a readback of MiniMir heap to
anyML environments.

» How do we readback a mutable borrow? We prophecise its
final value.

» A prophecy is the value an address a as type 1" borrowed for
« will have at the end of a.

Prophecy Maps

For a MiniMir trace © = C —* C’ /4, we calculate a prophecy
map by walking © backwards.
At each thaw, we record the values of all variables being unfrozen.

C

*C' = thaw «

*C”:thaWB S R

Proph(C') «+———— Proph(C’) +———— Proph(C") +—— -+

Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {* = x,” = any} in
let x = ~ y in

drop(y); assume { *x y = " y };

MiniMir Frame / Heap

z—a,y—bla—10,b—a

anyML Environment

x+— 10,y — (10,7)

Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {* = x,” = any} in
let x = ~ y in /

drop(y); assume { *x y = ~ y };

thaw o

MiniMir Frame / Heap

z—a,y—bla—10,b—a

xr—ala—15

anyML Environment

x+— 10,y — (10,7)

Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in
y := &mut, x; let y = {* = x,” = 15} in
let x = ~ y in
drop (y); assume { * y = ~ ¥ };
gthaw «
MiniMir Frame / Heap anyML Environment
z—a,y—bla—10,b—a x +— 10,y — (10,15)

xr—ala—15

Limitations and Difficulties

1. Complex syntactic proof with many cases
2. Proof does not cover function calls

3. Requires reasoning about future states

Current Work: Experimentation

File Edit Tools View Help

|Time Task two_mutation_inline.micfg
T module Tvomitationtaline

ke Rot =

Status | Theories/Goals
) v " two_mutation_inine.mictg

use int.Int
(32 Genérie Type for borroved vaiues *)

3
H

@ v [Twomstoninine H
§ Cone oo

main've for main] 6 { current

[EOETEE $ LS00 8 e v tuture’ value when borrow vill and +)

i
B A

1 Dhauves

14 (v /11111771 DetTa(0:
1 (+ 11771711717 Detrd(o:

two_mutation_inline[317d): assert(01) ///1///111/ *|
main(01) /11111171 %)

tuo_mutation inline(317d]

1
20 72 < { 2 'with current =
0 S0 0 wien ourrent -

000
Messages | Log | Edited proof | Prover output | Counterexamle |

Current Work: Experimentation

1. Creusot: a prototype implementation targeting Why3
2. Translates from MIR to MLCFG, a CFG front-end to WhyML
3. Extended with pre/post-conditions, invariants.

Conclusion

» Mutable borrows constrain pointers through non-aliasing.

» Leverage this to verify Rust-style programs by translation to
functional language.

» Represent borrows as pairs of current and final value.

» Use original simulation between traces and configurations to
prophecise final values.

» Implemented a PoC tool to experimentally validate approach.

Future Work

» Exploring a new proof based on RustBelt

» Specifications for Rust
» Extend with support for other Rust features: inner mutability,
trait objects, closures.

