
1/24

Deductive verification of programs with
Rust-style typing

Xavier Denis

Université Paris-Saclay, CNRS, Inria,
Laboratoire de Recherche en Informatique, 91405, Orsay, France.

November 23, 2020

2/24

Motivation

I We need to use pointers, and also reason about them.
I C-style pointers are too powerful.
I Introduce issues: uninitialized memory, aliasing
I Makes reasoning highly complex.

3/24

Overwriting memcpy

void memcpy (char * src , char * dest , int len) {
for(int i = 0; i < len; i++) dest[i] = src[i]

}

What happens if src and dest overlap?

1 2 3 · · · k

i = 1

1 1 3 · · · k

i = 2

1 1 1 · · · k

i = 3

3/24

Overwriting memcpy

void memcpy (char * src , char * dest , int len) {
for(int i = 0; i < len; i++) dest[i] = src[i]

}

What happens if src and dest overlap?

1 2 3 · · · k

i = 1

1 1 3 · · · k

i = 2

1 1 1 · · · k

i = 3

4/24

Ownership in Rust

I In Rust, every cell of memory has a unique owner.
I This turns the heap into a forest.
I Rust adds borrows, a form of pointers with a static lifetime.
I Safety of borrows is checked statically by compiler.
I This typing discipline gives Rust (manual) memory safety

5/24

Borrows & Lifetimes

Mutability XOR Sharing

I Mutable borrows are exclusive, but can be turned into
shareable immutable borrows.

I Borrows are implemented as pointers.
I A borrow must be released by the end of its lifetime.

6/24

Borrows & Lifetimes

α

a

b , &mutα a

a is frozen until the end of α, even if b is freed early.

7/24

Borrows & Lifetimes

fn memcpy (src: &mut [u8], dst: &mut [u8]) {
for (s, d) in src. iter_mut (). zip(dst.iter ()) {

*s = *d
}

}

fn main () {
let mut x = vec! [1 ,2 ,3 ,4 ,5];
let y = &mut x [0..3];
let z = &mut x [1..4];
memcpy (y, z)

}

error[E0499]: cannot borrow ‘x‘ as mutable more
than once at a time

8/24

Contributions

I Based on work of RustHorn (ESOP 2020)
I Deductive verification by translation to functional language for

Rust-style languages.
I Proof of safety using original simulation approach between

traces and configurations.
I Implemented this translation as a proof-of-concept extension

to the Rust compiler targeting Why3.

9/24

Starting Point

Source: MiniMir, a kernel for
languages with borrows
Target: Functional language with
any/assume non-determinism
and assertions.

10/24

any/assume non-determinism

let x = any in
let y = x + 1 in
assume { 1 <= y };
let z = y + x + 2 in
assert { z >= 3 }

11/24

Translating

Translating borrows
Mutable borrows are translated to a pair of values: the current and
final value that we divine at the creation of a borrow.

α

a

b , &mutα a

During α, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after α.

11/24

Translating

Translating borrows
Mutable borrows are translated to a pair of values: the current and
final value that we divine at the creation of a borrow.

let b = { * = a, ˆ = any } in
let a = ˆ b in
....
let b = { b with * = .. } in
assume { * b = ˆ b }

During α, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after α.

12/24

Example: Mutating a reference

fn main () {
let mut x = 10;
let y = &mut x

* y = 15;

assert_eq! (x, 15);
}

x := 10;
y := &mut α x;
t1 := 15;
t2 := &mut α t1;
swap(y, t2);
drop(t2);
drop(y);
thaw α;
t3 := x = 15;
assert _3;
t4 := ();
return _4;

13/24

Example: Mutating a reference

x := 10;
y := &mut α x;
t1 := 15;
t2 := &mut α t1;
swap(y, t2);
drop(t2);
drop(y);
thaw α;
t3 := x = 15;
assert _3;
t4 := ();
return _4;

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

13/24

Example: Mutating a reference

x := 10;
y := &mut α x;
t1 := 15;
t2 := &mut α t1;
swap(y, t2);
drop(t2);
drop(y);
thaw α;
t3 := x = 15;
assert _3;
t4 := ();
return _4;

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = 10

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = 10
y = {10, v1}

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}
t1 = 15

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}
t1 = 15
t2 = {15, v2}

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}
t1 = v2
t2 = {15, v2}

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}
t1 = v2
t2 = {15, v2}
t = 15

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {10, v1}
t1 = v2
t2 = {10, v2}
t = 15

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {15, v1}
t1 = v2
t2 = {10, v2}
t = 15

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {15, v1}
t1 = v2
t2 = {10, v2}
t = 15

Equalities

10 = v2

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {15, v1}
t1 = v2
t2 = {10, v2}
t = 15

Equalities

10 = v2
15 = v1

14/24

Example: Mutating a reference

let rec main () =
let x = 10 in
let y = {* = x, ˆ = any} in
let x = ˆ y in
let t1 = 15 in
let t2 = {* = s, ˆ = any} in
let t1 = ˆ t2 in
let t = * t2 in
let t2 = {t2 with * = * y} in
let y = {y with * = t} in
assume { * t2 = ˆ t2 };
assume { * y = ˆ y };
assert { x = 15 }

Environment

x = v1
y = {15, v1}
t1 = v2
t2 = {10, v2}
t = 15

Equalities

10 = v2
15 = v1

15/24

Safety

Theorem (Safety)
Given a well-typed MiniMir program ` P, if JPK is safe, then P is
safe.

To prove this we establish a simulation between MiniMir traces
and anyML configurations.

16/24

Preservation

Lemma (Progress)
Given a MiniMir trace Θ = C →∗P C ′ and a anyML configuration
such that C ∼P K, if K is not stuck then C is not stuck.

Lemma (Preservation of Simulation)
Given a MiniMir trace Θ = C →∗P C ′ and a anyML configuration
K such that Θ ∼P K, if C →P C ′′, there exists a K ′ such that
K → K ′ and C ′′ →∗P C ′ ∼P K ′.

17/24

Simulation

I The simulation ∼P gives a readback of MiniMir heap to
anyML environments.

I How do we readback a mutable borrow? We prophecise its
final value.

I A prophecy is the value an address a as type T borrowed for
α will have at the end of α.

18/24

Prophecy Maps

For a MiniMir trace Θ = C →∗ C ′ 6→, we calculate a prophecy
map by walking Θ backwards.
At each thaw, we record the values of all variables being unfrozen.

C C ′ = thaw α C ′′ = thaw β . . .

Proph(C) Proph(C ′) Proph(C ′′) . . .

∗ ∗ ∗

19/24

Proving preservation: &mut

x := 10;
y := &mut α x;
...
...
drop(y);
...

let rec main () =
let x = 10 in
let y = {* = x,ˆ = any} in
let x = ˆ y in
...
assume { * y = ˆ y };
...

MiniMir Frame / Heap

x 7→ a, y 7→ b | a 7→ 10, b 7→ a

...

anyML Environment

x 7→ 10, y 7→ (10, ?)

19/24

Proving preservation: &mut

x := 10;
y := &mut α x;
...
...
drop(y);
...
thaw α

let rec main () =
let x = 10 in
let y = {* = x,ˆ = any} in
let x = ˆ y in
...
assume { * y = ˆ y };
...

MiniMir Frame / Heap

x 7→ a, y 7→ b | a 7→ 10, b 7→ a

...

x 7→ a | a 7→ 15

anyML Environment

x 7→ 10, y 7→ (10, ?)

19/24

Proving preservation: &mut

x := 10;
y := &mut α x;
...
...
drop(y);
...
thaw α

let rec main () =
let x = 10 in
let y = {* = x,ˆ = 15} in
let x = ˆ y in
...
assume { * y = ˆ y };
...

MiniMir Frame / Heap

x 7→ a, y 7→ b | a 7→ 10, b 7→ a

...

x 7→ a | a 7→ 15

anyML Environment

x 7→ 10, y 7→ (10, 15)

20/24

Limitations and Difficulties

1. Complex syntactic proof with many cases
2. Proof does not cover function calls
3. Requires reasoning about future states

21/24

Current Work: Experimentation

22/24

Current Work: Experimentation

1. Creusot: a prototype implementation targeting Why3
2. Translates from MIR to MLCFG, a CFG front-end to WhyML
3. Extended with pre/post-conditions, invariants.

23/24

Conclusion

I Mutable borrows constrain pointers through non-aliasing.
I Leverage this to verify Rust-style programs by translation to

functional language.
I Represent borrows as pairs of current and final value.
I Use original simulation between traces and configurations to

prophecise final values.
I Implemented a PoC tool to experimentally validate approach.

24/24

Future Work

I Exploring a new proof based on RustBelt
I Specifications for Rust
I Extend with support for other Rust features: inner mutability,

trait objects, closures.

