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Motivation

> We need to use pointers, and also reason about them.
» C-style pointers are too powerful.
» Introduce issues: uninitialized memory, aliasing

» Makes reasoning highly complex.



Overwriting memcpy

void memcpy(char * src, char * dest, int len) {
for(int i = 0; i < len; i++) dest[i] = srcl[il

}

What happens if src and dest overlap?
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Ownership in Rust

In Rust, every cell of memory has a unique owner.
This turns the heap into a forest.
Rust adds borrows, a form of pointers with a static lifetime.

Safety of borrows is checked statically by compiler.
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This typing discipline gives Rust (manual) memory safety



Borrows & Lifetimes

Mutability XOR Sharing

» Mutable borrows are exclusive, but can be turned into
shareable immutable borrows.

» Borrows are implemented as pointers.
> A borrow must be released by the end of its lifetime.



Borrows & Lifetimes

b2 gmut, a |

a is frozen until the end of «, even if b is freed early.



Borrows & Lifetimes

fn memcpy(src: &mut [u8], dst: &mut [u8]) {
for (s, d) in src.iter_mut().zip(dst.iter()) {
*s = *xd
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fn main () {
let mut x = vec![1,2,3,4,5];
let y = &mut x[0..3];
let z = &mut x[1..4];
memcpy (y, z)
}
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error [E0499]: cannot borrow ‘x‘ as mutable more

than once at a time



Contributions

» Based on work of RustHorn (ESOP 2020)

» Deductive verification by translation to functional language for
Rust-style languages.

» Proof of safety using original simulation approach between
traces and configurations.

» Implemented this translation as a proof-of-concept extension
to the Rust compiler targeting Whys3.



Starting Point

Mini Mir, Mini Prix.
Mais il fait le Maximum.

Source: MiniMir, a kernel for
languages with borrows

Target: Functional language with
any/assume non-determinism
and assertions.




any/assume non-determinism

let x = any in

let y = x + 1 in
assume { 1 <=y };
let z =y + x + 2 in

assert { z >= 3 }



Translating

Translating borrows

Mutable borrows are translated to a pair of values: the current and
final value that we divine at the creation of a borrow.

b2 mut, a I

During «, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after «.
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let b = { b with *
assume { *x b = "~ b }

During «, a is frozen and inaccessible.
Intuitively, the final value stored in b is the value of a after «.



Example: Mutating a reference

fn main () {
let mut x

let y = &mut x

* y = 15;

assert_eq! (x,

x := 10;

y &mut, x;
t1 := 15;

to @ &mut, ti;
swap(y, t2);
drop (t9);

drop (y);
thaw «;
ty = X
assert _3;
ty = ():
return _4;
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Example: Mutating a reference

x := 10;

y := &mut, x;
t1 := 15;

tg := &mut, ti;
swap (y, t2);
drop (t9);
drop(y);

thaw «;

ty := x = 15;
assert _3;

tg = O);
return _4;



Example: Mutating a reference

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {x = x, ° = anyl} in
t; := 15; let x = 7 y in

tg := &mut, ti; let t; = 15 in

swap (y, t2); let to = {* = s, ~ = anyl} in
drop (t2); let t1 = ~ t9 in

drop (y); let t = * to in

thaw o; let to = {ty with * = x y} in
ty := x = 15; let y = {y with * = t} in
assert _3; assume { * ty = = t9 };

tg = O assume { * y = "~y };
return _4; assert { x = 15 }



Example: Mutating a reference

) Environment
let rec main () =

let x = 10 in x =10
let y = {x = x, ° = any} in

let x = ~ y in

let ¢ = 15 in

let to = {* = s, °~ = any} in

let t; = to in

let t = * 19 in

let to = {ty with * = x y} in

let y = {y with * = t} in

assume { * 1y = " 3 };

assume { *x y = " y };
assert { x = 15 }
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Safety

Theorem (Safety)
Given a well-typed MiniMir program & P, if [P] is safe, then P is
safe.

To prove this we establish a simulation between MiniMir traces
and anyML configurations.



Preservation

Lemma (Progress)

Given a MiniMir trace © = C' =%, C' and a anyML configuration
such that C' ~p K, if K is not stuck then C is not stuck.

Lemma (Preservation of Simulation)

Given a MiniMir trace © = C' =, C' and a anyML configuration
K such that © ~p K, if C —p C", there exists a K' such that
K — K' and C" =% C' ~p K'.



Simulation

» The simulation ~p gives a readback of MiniMir heap to
anyML environments.

» How do we readback a mutable borrow? We prophecise its
final value.

» A prophecy is the value an address a as type 1" borrowed for
« will have at the end of a.



Prophecy Maps

For a MiniMir trace © = C —* C’ /4, we calculate a prophecy
map by walking © backwards.
At each thaw, we record the values of all variables being unfrozen.

C

*C' = thaw «

*C”:thaWB S R

Proph(C') «+———— Proph(C’) +———— Proph(C") +—— -+



Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {* = x,” = any} in
let x = ~ y in

drop(y); assume { *x y = " y };

MiniMir Frame / Heap

z—a,y—bla—10,b—a

anyML Environment

x+— 10,y — (10,7)



Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in

y := &mut, x; let y = {* = x,” = any} in
let x = ~ y in /

drop(y); assume { *x y = ~ y };

thaw o
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Proving preservation: &mut

let rec main () =

x := 10; let x = 10 in
y := &mut, x; let y = {* = x,” = 15} in
let x = ~ y in
drop (y); assume { * y = ~ ¥ };
gthaw «
MiniMir Frame / Heap anyML Environment
z—a,y—bla—10,b—a x +— 10,y — (10,15)

xr—ala—15



Limitations and Difficulties

1. Complex syntactic proof with many cases
2. Proof does not cover function calls

3. Requires reasoning about future states



Current Work: Experimentation
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Current Work: Experimentation

1. Creusot: a prototype implementation targeting Why3
2. Translates from MIR to MLCFG, a CFG front-end to WhyML
3. Extended with pre/post-conditions, invariants.



Conclusion

» Mutable borrows constrain pointers through non-aliasing.

» Leverage this to verify Rust-style programs by translation to
functional language.

» Represent borrows as pairs of current and final value.

» Use original simulation between traces and configurations to
prophecise final values.

» Implemented a PoC tool to experimentally validate approach.



Future Work

» Exploring a new proof based on RustBelt

» Specifications for Rust
» Extend with support for other Rust features: inner mutability,
trait objects, closures.



