
Yannick ZAKOWSKI

Yannick Zakowski

December 18th, 2019/ 40

From Representing Recursive
and Impure Programs in Coq to
a Modular Formal Semantics of

LLVM IR

1

Introduction:  
The DeepSpec NSF Expedition

2 / 40

Yannick ZAKOWSKI December 18th, 2019/ 403

A Cross-Institutions
Enterprise…

Chlipala BerengerAppel Pierce ShaoZdancewicWierich

Yannick ZAKOWSKI December 18th, 2019/ 404

… Encompassing a Variety of
Projects!

• Rich  
More than functional specification

• Live  
Connected to executable artifacts

• Formal  
Ideally, machine-checked

• Two-sided 
Interfaced to both client  
and implementation

Specifications with a shared philosophy

Yannick ZAKOWSKI December 18th, 2019/ 405

Ambition: Full Stack Verified
Artifacts

Beyond a shared philosophy:
combining these efforts

Kami + CertiKOS + VST + QuickChick
=

Verified Web Server?

Yannick ZAKOWSKI December 18th, 2019/ 406

Ambition: Full Stack Verified
Artifacts

Verified OS Kernel

Toolchain to prove properties of  
compiled C programs

Property-based testing in Coq

Framework for verified  
Blue-Spec-style components

Decidable Gallina functions

Separation Logic + CompCert

Certified Abstraction Layers

Labelled Transition Systems

Yannick ZAKOWSKI December 18th, 2019/ 406

Ambition: Full Stack Verified
Artifacts

Verified OS Kernel

Toolchain to prove properties of  
compiled C programs

Property-based testing in Coq

Framework for verified  
Blue-Spec-style components

Swap Server (now)

HTTP Server (ongoing)

Decidable Gallina functions

Separation Logic + CompCert

Certified Abstraction Layers

Labelled Transition Systems

Yannick ZAKOWSKI December 18th, 2019/ 406

Ambition: Full Stack Verified
Artifacts

Verified OS Kernel

Specification could use  
a Franca Lingua!

Toolchain to prove properties of  
compiled C programs

Property-based testing in Coq

Framework for verified  
Blue-Spec-style components

Swap Server (now)

HTTP Server (ongoing)

Decidable Gallina functions

Separation Logic + CompCert

Certified Abstraction Layers

Labelled Transition Systems

Interaction Trees:
Representing Recursive and Impure
Programs in Coq

7 / 40

Yannick ZAKOWSKI December 18th, 2019/ 408

Cahiers de Doléances

Able to model very diverse impure specifications

A C-implementation of a web-server

The interface exposed by CertiKOS

Easily linked to executable implementation

Testing specifications

Verified executed web-server

Convenient source of definitional interpreters

Yannick ZAKOWSKI December 18th, 2019/ 409

Cahiers de Doléances

Amenable to large scale proofs

Modular specification

Equational reasoning

Practical library

Formalised in the Coq Proof Assistant

Strongly normalizing: how to represent divergence?

Pure: how to represent effects?

Yannick ZAKOWSKI December 18th, 2019/ 4010

Cahiers de Doléances

Specification of impure computations in the Coq proof assistant
supporting extraction and modular reasoning

Yannick ZAKOWSKI December 18th, 2019/ 4010

Cahiers de Doléances

Specification of impure computations in the Coq proof assistant
supporting extraction and modular reasoning

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees
CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees
CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

• which may return a value of type R,

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

• which may return a value of type R,
• while emitting during its execution events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

• which may return a value of type R,
• while emitting during its execution events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

• which may return a value of type R,
• while emitting during its execution events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4011

Interaction Trees

• a potentially diverging computation,

• which may return a value of type R,
• while emitting during its execution events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

Relates to many existing works in the litterature:  
* Composible effects: Kiselyov & Ishii’s Freer monad
* Partial function in type theory: Capretta’s Delay monad 
* Effectful computations in Type Theory: Hancock, McBride’s general monad 
* Effectful Programs in Coq: Letan & Gianas’s FreeSpec

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019/ 4012

ITrees Come in All Shapes and
Forms

Yannick ZAKOWSKI December 18th, 2019/ 4012

ITrees Come in All Shapes and
Forms

1789Pure computations Ret 1789

τ τ 1776Tau (Tau (Ret 1776))

Yannick ZAKOWSKI December 18th, 2019/ 4012

ITrees Come in All Shapes and
Forms

1789Pure computations Ret 1789

τ τ 1776Tau (Tau (Ret 1776))

τ τ τ τ τ τ τ …Silent divergence CoFixpoint spin := Tau spin

Yannick ZAKOWSKI December 18th, 2019/ 4012

ITrees Come in All Shapes and
Forms

1789Pure computations Ret 1789

τ τ 1776Tau (Tau (Ret 1776))

τ τ τ τ τ τ τ …Silent divergence CoFixpoint spin := Tau spin

Effectful computation
τ τ e

k true

k false τ 1776

1789

Tau (Tau (Vis e  
 (fun b => match b with 
 | true => Ret 1789  
 | false => Tau (Ret 1776) 
 end)))

Yannick ZAKOWSKI December 18th, 2019/ 4013

ITrees Come in All Shapes and
Forms

τ τ

τ τ τ τ τ τ

τ τ τ τ e2

k2 0

k2 1

k2 3e1

k1 a

k1 b

k1 c

k1 d

k1 e

τ τ τ …

τ e3 k3 () τ e3 k3 () τ e3 k3 () …

τ τ 42 τ τ 17

τ 11

τ τ τ 0τ dτ dτ dτ d

d Failure: event of return type void

Yannick ZAKOWSKI December 18th, 2019/ 4014

Composing Computations:
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
 match t with
 | Ret r => k r  
 | Tau t => Tau (bind t k) 
 | Vis e h => Vis e (fun x => bind (h x) k) 
 end.

Monadic structure

Yannick ZAKOWSKI December 18th, 2019/ 4014

Composing Computations:
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
 match t with
 | Ret r => k r  
 | Tau t => Tau (bind t k) 
 | Vis e h => Vis e (fun x => bind (h x) k) 
 end.

Monadic structure

Yannick ZAKOWSKI December 18th, 2019/ 4014

Composing Computations:
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
 match t with
 | Ret r => k r  
 | Tau t => Tau (bind t k) 
 | Vis e h => Vis e (fun x => bind (h x) k) 
 end.

Monadic structure
Notation:

x <- s ;; k

bind s (fun x => k)
≜

Yannick ZAKOWSKI December 18th, 2019/ 4014

Composing Computations:
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
 match t with
 | Ret r => k r  
 | Tau t => Tau (bind t k) 
 | Vis e h => Vis e (fun x => bind (h x) k) 
 end.

ret_bind: x <- ret v ;; k x k v

bind_ret: x <- t ;; ret x t

bind_bind: x <- (y <- s ;; t) ;; u y <- s ;; x <- t ;; u

≈

≈

≈

Monad laws:

Monadic structure
Notation:

x <- s ;; k

bind s (fun x => k)
≜

Yannick ZAKOWSKI December 18th, 2019/ 4014

Composing Computations:
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
 match t with
 | Ret r => k r  
 | Tau t => Tau (bind t k) 
 | Vis e h => Vis e (fun x => bind (h x) k) 
 end.

ret_bind: x <- ret v ;; k x k v

bind_ret: x <- t ;; ret x t

bind_bind: x <- (y <- s ;; t) ;; u y <- s ;; x <- t ;; u

≈

≈

≈

Monad laws:

Monadic structure
Notation:

x <- s ;; k

bind s (fun x => k)
≜

ITree equivalence?

Yannick ZAKOWSKI December 18th, 2019/ 4015

ITree Equivalence

t s t = s

 Inductive eq {X: Type}: Prop := 
 | eq_refl: forall (x: X), eq x x.

≈ ≜

Option 1: Coq’s propositional equality?

Yannick ZAKOWSKI December 18th, 2019/ 4015

ITree Equivalence

t s t = s

 Inductive eq {X: Type}: Prop := 
 | eq_refl: forall (x: X), eq x x.

≈ ≜

Option 1: Coq’s propositional equality?

 spin = Tau spin⊬

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t s bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 

 | EqRet: bisimF (Ret v) (Ret v)

 | EqTau: sim t s -> bisimF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈
 Tau spin spin⊢ ≈

https://github.com/snu-sf/paco

Yannick ZAKOWSKI December 18th, 2019/ 4017

ITree Equivalence
Equivalence Up-To Tau

1789 τ 1789≈

Yannick ZAKOWSKI December 18th, 2019/ 4017

ITree Equivalence
Equivalence Up-To Tau

1789 τ 1789≈

t s eutt t s

 Inductive euttF (sim: relation (itree E R)): relation itree E R := 

 | EqRet: euttF (Ret v) (Ret v)

 | EqTau: sim t s -> euttF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> euttF sim (Vis e k1) (Vis e k2)

 | EqTauL: euttF sim t s -> euttF sim (Tau t) s

 | EqTauR: euttF sim t s -> euttF sim t (Tau s)

eutt t s paco euttF bot2

https://github.com/snu-sf/paco

≈ ≜

≜

Yannick ZAKOWSKI December 18th, 2019/ 4017

ITree Equivalence
Equivalence Up-To Tau

1789 τ 1789≈

t s eutt t s

 Inductive euttF (sim: relation (itree E R)): relation itree E R := 

 | EqRet: euttF (Ret v) (Ret v)

 | EqTau: sim t s -> euttF sim (Tau t) (Tau s)

 | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
 -> euttF sim (Vis e k1) (Vis e k2)

 | EqTauL: euttF sim t s -> euttF sim (Tau t) s

 | EqTauR: euttF sim t s -> euttF sim t (Tau s)

eutt t s paco euttF bot2

https://github.com/snu-sf/paco

≈ ≜

≜

1789≉spin

Yannick ZAKOWSKI December 18th, 2019/ 4018

ITrees so Far

A coinductive datastructure representing computations;

Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.

Yannick ZAKOWSKI December 18th, 2019/ 4018

ITrees so Far

A coinductive datastructure representing computations;

Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.

Let’s try using them!

Yannick ZAKOWSKI December 18th, 2019/ 4019

Everyone’s Favorite
Case Study: Imp

Inductive imp : Type :=
 | Skip  
 | Assign (x: var) (e: exp)
 | Seq (c1 c2: imp)
 | If (b: exp) (t e: imp)
 | While (b: exp) (c: imp).

• Give a denotation to imp
• That is executable

• Suitable to verify a compiler

Our objective:

Yannick ZAKOWSKI December 18th, 2019/ 4019

Everyone’s Favorite
Case Study: Imp

Inductive imp : Type :=
 | Skip  
 | Assign (x: var) (e: exp)
 | Seq (c1 c2: imp)
 | If (b: exp) (t e: imp)
 | While (b: exp) (c: imp).

• Give a denotation to imp
• That is executable

• Suitable to verify a compiler

Our objective:

Proceeds in two steps

1. Syntax is denoted in terms of itrees;

2. Events contained in the trees are given a semantics into a monad.

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:
Definition trigger {E X}(e: E X): itree E X :=
 Vis e (fun x => Ret x)

Minimal effectful computation:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:
Definition trigger {E X}(e: E X): itree E X :=
 Vis e (fun x => Ret x)

Minimal effectful computation:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:
Definition trigger {E X}(e: E X): itree E X :=
 Vis e (fun x => Ret x)

Minimal effectful computation:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 40

20

Imp Programs as ITrees

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Effect interface of Imp:
Definition trigger {E X}(e: E X): itree E X :=
 Vis e (fun x => Ret x)

Minimal effectful computation:

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => ???
 end.

Denotation of imp in term of itrees:

20

Yannick ZAKOWSKI December 18th, 2019/ 4021

An Iteration Combinator

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:

Yannick ZAKOWSKI December 18th, 2019/ 4021

An Iteration Combinator

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:

Continuation trees:
Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:

Yannick ZAKOWSKI December 18th, 2019/ 4021

An Iteration Combinator

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:

Continuation trees:
Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:
• They can be composed; k1 >>> k2

Yannick ZAKOWSKI December 18th, 2019/ 4021

An Iteration Combinator

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:

Continuation trees:
Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:
• They can be composed;

• They support case analysis;
k1 >>> k2
case k1 k2

Yannick ZAKOWSKI December 18th, 2019/ 4021

An Iteration Combinator

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:

Continuation trees:
Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:
• They can be composed;

• They support case analysis;
• They can be iterated over!

k1 >>> k2
case k1 k2
iter k

Yannick ZAKOWSKI December 18th, 2019/ 4022

An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:
CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
 fun a => ab <- body a ;; 
 match ab with
 | inl a => Tau (iter body a) 
 | inr b => Ret b 
 end.

Yannick ZAKOWSKI December 18th, 2019/ 4022

An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:
CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
 fun a => ab <- body a ;; 
 match ab with
 | inl a => Tau (iter body a) 
 | inr b => Ret b 
 end.

Termination

Yannick ZAKOWSKI December 18th, 2019/ 4022

An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:
CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
 fun a => ab <- body a ;; 
 match ab with
 | inl a => Tau (iter body a) 
 | inr b => Ret b 
 end.

New iteration (guarded)
Termination

Yannick ZAKOWSKI December 18th, 2019/ 4022

An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

den_imp (while b do c) =?  
 v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; den_imp (while b do c) 
 else ret tt

One would like to write:
den_imp (while b do c) = iter  
 (fun _ => v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; ret (inl tt) 
 else ret (inr tt))

One can write:

CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
 fun a => ab <- body a ;; 
 match ab with
 | inl a => Tau (iter body a) 
 | inr b => Ret b 
 end.

New iteration (guarded)
Termination

Yannick ZAKOWSKI December 18th, 2019/ 4023

Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (GetVar v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => iter (fun _ => v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; ret (inl tt) 
 else ret (inr tt))

Denotation of imp in term of itrees:

Are we done?

Yannick ZAKOWSKI December 18th, 2019/ 4023

Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
 match c with 
 | Skip => ret tt
 | Assign x e => v <- den_exp e ;; trigger (GetVar v)
 | Seq c1 c2 => den_imp c1 ;; den_imp c2
 | If b t e => v <- den_exp b ;; 
 if is_true v then den_imp t else den_imp e
 | While b c => iter (fun _ => v <- den_exp b ;; 
 if is_true v  
 then den_imp c ;; ret (inl tt) 
 else ret (inr tt))

Denotation of imp in term of itrees:

Are we done?

Let’s add some semantic to the mix

Yannick ZAKOWSKI December 18th, 2019/ 4024

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019/ 4024

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M.

Yannick ZAKOWSKI December 18th, 2019/ 4024

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M. Notation:
 E ~> M forall X, E X -> M X≜

Yannick ZAKOWSKI December 18th, 2019/ 4024

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type := 
 | ERead (x: var) : E_imp value
 | EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M. Notation:
 E ~> M forall X, E X -> M X≜

Definition h_imp : E_imp ~> stateT (itree voidE) :=
 fun X e s => match e with
 | ERead x => Ret (s , s[x])
 | EWrite x v => Ret (s[x <- v], tt)
 end

Let's handle E_imp into the state monad.

Yannick ZAKOWSKI December 18th, 2019/ 4025

Lifting Meaning to ITrees:
Interpreters

interp (h: E ~> M): itree E R ~> M R

The library provides an interpretation function:

Class MonadIter (M : Type -> Type) : Type :=
 iter : forall {R A: Type}  
 (body: A -> M (A + R)),  
 A -> M R.

Assuming that the monad M supports a notion of iteration:

Yannick ZAKOWSKI December 18th, 2019/ 4025

Lifting Meaning to ITrees:
Interpreters

interp (h: E ~> M): itree E R ~> M R

The library provides an interpretation function:

Class MonadIter (M : Type -> Type) : Type :=
 iter : forall {R A: Type}  
 (body: A -> M (A + R)),  
 A -> M R.

Assuming that the monad M supports a notion of iteration:

• itree E
• Prop

supports it preserves it

• stateT M

• readerT M
• optionT M

• eitherT M

} }

Yannick ZAKOWSKI December 18th, 2019/ 4026

Denotational, Yet Executable
ITrees are coinductive: they can therefore be extracted

to an OCaml lazy structure!

Yannick ZAKOWSKI December 18th, 2019/ 4026

Denotational, Yet Executable
ITrees are coinductive: they can therefore be extracted

to an OCaml lazy structure!

let rec run t = 
 match t with 
 | Ret r -> r  
 | Tau t -> run t
 | Vis (e,k) -> handle e (fun x -> run (k x))

Simply requires a minimal driver in OCaml:

Yannick ZAKOWSKI December 18th, 2019/ 4026

Denotational, Yet Executable
ITrees are coinductive: they can therefore be extracted

to an OCaml lazy structure!

let rec run t = 
 match t with 
 | Ret r -> r  
 | Tau t -> run t
 | Vis (e,k) -> handle e (fun x -> run (k x))

Simply requires a minimal driver in OCaml:

• Nothing to do in the case of our Imp language: all events are interpreted in Coq

• In general, leaves the leisure to write unverified handlers in OCaml

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈
• Congruence Laws: (t1 t2 k1 k2) (t1 ;; k1) (t2 ;; k2) ≈ ∧ ·≈ → ≈

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈
• Congruence Laws: (t1 t2 k1 k2) (t1 ;; k1) (t2 ;; k2) ≈ ∧ ·≈ → ≈
• Monoidal Laws: (inl >>> case h k) h ·≈

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈
• Congruence Laws: (t1 t2 k1 k2) (t1 ;; k1) (t2 ;; k2) ≈ ∧ ·≈ → ≈
• Monoidal Laws: (inl >>> case h k) h ·≈
• Iteration Laws: (iter f) (f >>> case (iter f) id) ·≈

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈
• Congruence Laws: (t1 t2 k1 k2) (t1 ;; k1) (t2 ;; k2) ≈ ∧ ·≈ → ≈
• Monoidal Laws: (inl >>> case h k) h ·≈
• Iteration Laws: (iter f) (f >>> case (iter f) id) ·≈
• Interp Laws: (interp h (trigger e)) h e  

 (interp h (t ;; k)) (x interp h t ;; interp h (k x))
≈

≈ ←

Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

• Monad Laws: (x t ;; x) t ← ≈
• Structural Laws: (Tau t) t ≈
• Congruence Laws: (t1 t2 k1 k2) (t1 ;; k1) (t2 ;; k2) ≈ ∧ ·≈ → ≈
• Monoidal Laws: (inl >>> case h k) h ·≈
• Iteration Laws: (iter f) (f >>> case (iter f) id) ·≈
• Interp Laws: (interp h (trigger e)) h e  

 (interp h (t ;; k)) (x interp h t ;; interp h (k x))
≈

≈ ←

~> Most proofs about itrees are purely based on rewriting

Support for setoid-based rewriting

Yannick ZAKOWSKI December 18th, 2019/ 4028

A Side Product
In the process of establishing this equational theory,

we worked with Gil Hur on an extension of paco
• Richer reasoning principles  

(fixed a deficiency of paco in the presence of nested cofixed-points);
• Fully backward compatible with paco;

• An approach to up-to reasoning principles discriminating  
between strong and weak guards;

• Come see the talk at CPP in January for more!

Yannick ZAKOWSKI December 18th, 2019/ 4029

A Verified Compiler you Said?

• Similar process over asm, an assembly like language;
• Compiler from imp to asm;

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:

Yannick ZAKOWSKI December 18th, 2019/ 4029

A Verified Compiler you Said?

• Similar process over asm, an assembly like language;
• Compiler from imp to asm;

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:

tE
Imp

tF
asm

t∅
Imp

t∅
asm

denImp

denAsm

interpImp

interpAsm

euttℛsim

p

𝒞(p)

Yannick ZAKOWSKI December 18th, 2019/ 4029

A Verified Compiler you Said?

• Similar process over asm, an assembly like language;
• Compiler from imp to asm;

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:

• Correctness of the control flow proved independently;
• Termination sensitive, yet inductive proof;

• Almost entirely based on rewriting.

Key characteristics of the approach:

Yannick ZAKOWSKI December 18th, 2019/ 4029

A Verified Compiler you Said?

Documented as a tutorial:
https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial

• Similar process over asm, an assembly like language;
• Compiler from imp to asm;

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:

• Correctness of the control flow proved independently;
• Termination sensitive, yet inductive proof;

• Almost entirely based on rewriting.

Key characteristics of the approach:

https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial

Yannick ZAKOWSKI December 18th, 2019/ 4030

ITrees Used in Projects

Embeds Haskell programs in Coq to verify them

ITrees are embedded into VST's assertions  
to specify C programs

ITrees instantiated with two different interfaces
specify the server and its implementation

ITree-based specifications are used as a model
generating test tracing to check again

A Modular Semantics for LLVM’s IR
Based on ITrees (Work In Progress)

31 / 40

Yannick ZAKOWSKI

Vellvm: a Formal Semantics
for LLVM

32 December 18th, 2019/ 40

• Jianzhou Zhao

• Milo M.K. Martin

• Santosh Nagarakatte

• Dmitri Garbuzov

• William Mansky

• Christine Rizkallah

• Olek Gierczak

• Gil Hur

• Jeehon Kang
• Viktor Vafeiadis

Steve Zdancewic

Yannick Zakowski

Active participants Past participants

Calvin Beck

Yannick ZAKOWSKI

Example LLVM Code

33 December 18th, 2019/ 40

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

define @factorial(%n) {

}

Yannick ZAKOWSKI

Vellvm: version 1 (2013)

34 December 18th, 2019/ 40

A success inspired by CompCert:

• A large fragment of (sequential) LLVM covered

• A small step operational semantics
• Complex transformations proved correct (mem2reg, …)

With its limitations:

• A monolithic development

• Hard to maintain, difficult to expand
• Complex proofs involved

Can interaction trees help to develop a new semantics
 that enjoys more modularity?

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• Undefined Behavior

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• Undefined Behavior

• Calls

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• Undefined Behavior

• Calls

• Debugging

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• Undefined Behavior

• Calls

• Debugging

• Failure

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Yannick ZAKOWSKI December 18th, 2019/ 40

Well… Let’s Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory

• Pick

• Undefined Behavior

• Calls

• Debugging

• Failure

• MPush/MPop

• Load(t,l)/Store(a,v)
• Alloca(t)

• GEP(t,v,vs)
• PtoI(a)/ItoP(i)

35

Raises challenges to compose interfaces!

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

Definition den_instr i : itree instr_E unit

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

Definition den_instr i : itree instr_E unit

Definition den_terminator t : itree exp_E (bid + value)

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

Definition den_instr i : itree instr_E unit

Definition den_terminator t : itree exp_E (bid + value)

Definition den_block b : itree instr_E (bid + value)

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

Definition den_instr i : itree instr_E unit

Definition den_terminator t : itree exp_E (bid + value)

Definition den_block b : itree instr_E (bid + value)

Definition den_cfg f : itree instr_E value

36

Yannick ZAKOWSKI December 18th, 2019/ 40

To Some Extent: Same Story
on Another Scale

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

Fixpoint den_exp t e : itree exp_E value

Definition den_instr i : itree instr_E unit

Definition den_terminator t : itree exp_E (bid + value)

Definition den_block b : itree instr_E (bid + value)

Definition den_cfg f : itree instr_E value

36

den_block: ktree instr_E bid (bid + value)

It’s a fixed-point!

den_block := iter …

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

itree E3 (memory * (lstack * (gstate * value))) interp_memory

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

itree E3 (memory * (lstack * (gstate * value))) interp_memory

itree E4 (memory * (lstack * (gstate * value))) -> Prop

model_undef

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

itree E3 (memory * (lstack * (gstate * value))) interp_memory

itree E4 (memory * (lstack * (gstate * value))) -> Prop

model_undef

itree E5 (memory * (lstack * (gstate * value))) -> Prop

model_UB

37

Yannick ZAKOWSKI December 18th, 2019/ 40

A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

itree E3 (memory * (lstack * (gstate * value))) interp_memory

itree E4 (memory * (lstack * (gstate * value))) -> Prop

model_undef

itree E5 (memory * (lstack * (gstate * value))) -> Prop

model_UB

itree E4 (memory * (lstack * (gstate * value)))

itree E5 (memory * (lstack * (gstate * value)))

execute_undef

fail_UB

37

Yannick ZAKOWSKI

State of the Project

38 December 18th, 2019/ 40

The full story has more to say, including about:

• Treatment of poison and undef;
• Mutually recursive definition of functions;

• Memory model;
• Hierarchy of refinements.

Yannick ZAKOWSKI

State of the Project

38 December 18th, 2019/ 40

The full story has more to say, including about:

• Treatment of poison and undef;
• Mutually recursive definition of functions;

• Memory model;
• Hierarchy of refinements.

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
is in progress.

Yannick ZAKOWSKI

State of the Project

38 December 18th, 2019/ 40

The full story has more to say, including about:

• Treatment of poison and undef;
• Mutually recursive definition of functions;

• Memory model;
• Hierarchy of refinements.

This is still a work in progress, but it can be followed on Github:
https://github.com/vellvm/vellvm

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
is in progress.

https://github.com/vellvm/vellvm

Yannick ZAKOWSKI

State of the Project

38 December 18th, 2019/ 40

The full story has more to say, including about:

• Treatment of poison and undef;
• Mutually recursive definition of functions;

• Memory model;
• Hierarchy of refinements.

This is still a work in progress, but it can be followed on Github:
https://github.com/vellvm/vellvm

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
is in progress.

Already a user: Vadim Zaliva compiles Helix to Vellvm!

https://github.com/vellvm/vellvm

Conclusion

39 / 40

Yannick ZAKOWSKI 40 December 18th, 2019/ 40

Interaction trees (POPL’20) offer a library for:
• A data-structure to represent recursive, effectful computations;

• Expressive combinators to build and compose them;
• A family of interpreters of itrees into monads;

• A rich equational theory to reason up-to taus about them;

• Tutorial to prove a compiler correct using itrees.

Yannick ZAKOWSKI 40 December 18th, 2019/ 40

Interaction trees (POPL’20) offer a library for:
• A data-structure to represent recursive, effectful computations;

• Expressive combinators to build and compose them;
• A family of interpreters of itrees into monads;

• A rich equational theory to reason up-to taus about them;

• Tutorial to prove a compiler correct using itrees.

Generalized Parameterized Coinduction (CPP’20):
• Extends the paco library in a backward-compatible way;

• Demonstrates how to axiomatize reasoning up-to tau 
in a way sensitive to strong/weak guards.

Yannick ZAKOWSKI 40 December 18th, 2019/ 40

Interaction trees (POPL’20) offer a library for:
• A data-structure to represent recursive, effectful computations;

• Expressive combinators to build and compose them;
• A family of interpreters of itrees into monads;

• A rich equational theory to reason up-to taus about them;

• Tutorial to prove a compiler correct using itrees.

A modular Vellvm using ITrees (in progress):

• A new completely denotational semantics;
• A chain of interpreters allowing for both a model and an executable;

• Notions of refinements inheriting from itree’s equational theory.

Generalized Parameterized Coinduction (CPP’20):
• Extends the paco library in a backward-compatible way;

• Demonstrates how to axiomatize reasoning up-to tau 
in a way sensitive to strong/weak guards.

Yannick ZAKOWSKI 40 December 18th, 2019/ 40

Interaction trees (POPL’20) offer a library for:
• A data-structure to represent recursive, effectful computations;

• Expressive combinators to build and compose them;
• A family of interpreters of itrees into monads;

• A rich equational theory to reason up-to taus about them;

• Tutorial to prove a compiler correct using itrees.

A modular Vellvm using ITrees (in progress):

• A new completely denotational semantics;
• A chain of interpreters allowing for both a model and an executable;

• Notions of refinements inheriting from itree’s equational theory.

Generalized Parameterized Coinduction (CPP’20):
• Extends the paco library in a backward-compatible way;

• Demonstrates how to axiomatize reasoning up-to tau 
in a way sensitive to strong/weak guards.

Two early prospects:

• Denoting CCS as ITrees;

• Dijkstra’s monad for ITrees.

