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A Cross-Institutions 
Enterprise…

Chlipala BerengerAppel Pierce ShaoZdancewicWierich
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… Encompassing a Variety of 
Projects!

• Rich  
More than functional specification 

• Live  
Connected to executable artifacts 

• Formal  
Ideally, machine-checked 

• Two-sided 
Interfaced to both client  
and implementation

Specifications with a shared philosophy
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Ambition: Full Stack Verified 
Artifacts 

Beyond a shared philosophy:  
combining these efforts

Kami + CertiKOS + VST + QuickChick 
= 

Verified Web Server?
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Cahiers de Doléances

Able to model very diverse impure specifications

A C-implementation of a web-server 

The interface exposed by CertiKOS

Easily linked to executable implementation

Testing specifications

Verified executed web-server

Convenient source of definitional interpreters
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Cahiers de Doléances

Amenable to large scale proofs

Modular specification

Equational reasoning

Practical library

Formalised in the Coq Proof Assistant

Strongly normalizing: how to represent divergence?

Pure: how to represent effects?
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Cahiers de Doléances

Specification of impure computations in the Coq proof assistant 
supporting extraction and modular reasoning
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Interaction Trees
CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
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Interaction Trees

• a potentially diverging computation,

• which may return a value of type R, 
• while emitting during its execution events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Tau (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

Relates to many existing works in the litterature:   
* Composible effects: Kiselyov & Ishii’s Freer monad  
* Partial function in type theory: Capretta’s Delay monad 
* Effectful computations in Type Theory: Hancock, McBride’s general monad 
* Effectful Programs in Coq: Letan & Gianas’s FreeSpec

A value of the datatype (itree E R) represents:
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ITrees Come in All Shapes and 
Forms

1789Pure computations Ret 1789

τ τ 1776Tau (Tau (Ret 1776))

τ τ τ τ τ τ τ …Silent divergence CoFixpoint spin := Tau spin

Effectful computation
τ τ e

k true

k false τ 1776

1789

Tau (Tau (Vis e  
  (fun b => match b with 
        | true => Ret 1789  
        | false => Tau (Ret 1776) 
    end)))
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ITrees Come in All Shapes and 
Forms

τ τ

τ τ τ τ τ τ

τ τ τ τ e2

k2 0

k2 1

k2 3e1

k1 a

k1 b

k1 c

k1 d

k1 e

τ τ τ …

τ e3 k3 () τ e3 k3 () τ e3 k3 () …

τ τ 42 τ τ 17

τ 11

τ τ τ 0τ dτ dτ dτ d

d Failure: event of return type void
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Composing Computations:  
the ITree Monad

Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := 
    match t with
      | Ret r    => k r  
      | Tau t    => Tau (bind t k) 
      | Vis e h => Vis e (fun x => bind (h x) k) 
    end.

Monadic structure
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≈

≈
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Monad laws:

Monadic structure
Notation:

x <- s ;; k

bind s (fun x => k)
≜

ITree equivalence?
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ITree Equivalence

t    s     t   =  s

 Inductive eq {X: Type}: Prop := 
     | eq_refl: forall (x: X), eq x x.

≈ ≜

Option 1: Coq’s propositional equality?
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t    s     t   =  s

 Inductive eq {X: Type}: Prop := 
     | eq_refl: forall (x: X), eq x x.

≈ ≜

Option 1: Coq’s propositional equality?

  spin = Tau spin⊬
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ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4016

ITree Equivalence
Option 2: Strong bisimulation?

t    s     bisim t s

 Inductive bisimF (sim: relation (itree E R)): relation (itree E R) := 
   
    | EqRet: bisimF (Ret v) (Ret v)

    | EqTau: sim t s  -> bisimF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> bisimF sim (Vis e k1) (Vis e k2)

bisim t s  paco bisimF bot

https://github.com/snu-sf/paco

≈ ≜

≜

1789 1789≈
τ 1789 τ 1789≈

e

1776

1789

e

1776

1789

≈
 Tau spin  spin⊢ ≈

https://github.com/snu-sf/paco


Yannick ZAKOWSKI December 18th, 2019/ 4017

ITree Equivalence
Equivalence Up-To Tau
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ITree Equivalence
Equivalence Up-To Tau

1789 τ 1789≈

t    s     eutt t s
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    | EqTauR: euttF sim t s -> euttF sim t (Tau s)

eutt t s  paco euttF bot2

https://github.com/snu-sf/paco

≈ ≜

≜



Yannick ZAKOWSKI December 18th, 2019/ 4017

ITree Equivalence
Equivalence Up-To Tau

1789 τ 1789≈

t    s     eutt t s

 Inductive euttF (sim: relation (itree E R)): relation itree E R := 
   
    | EqRet: euttF (Ret v) (Ret v)

    | EqTau: sim t s  -> euttF sim (Tau t) (Tau s)

    | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))  
                                -> euttF sim (Vis e k1) (Vis e k2)

    | EqTauL: euttF sim t s -> euttF sim (Tau t) s

    | EqTauR: euttF sim t s -> euttF sim t (Tau s)

eutt t s  paco euttF bot2

https://github.com/snu-sf/paco

≈ ≜

≜

1789≉spin



Yannick ZAKOWSKI December 18th, 2019/ 4018

ITrees so Far

A coinductive datastructure representing computations;

Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.



Yannick ZAKOWSKI December 18th, 2019/ 4018

ITrees so Far

A coinductive datastructure representing computations;

Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.

Let’s try using them!
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Inductive imp : Type :=
  | Skip  
  | Assign (x: var) (e: exp)
  | Seq (c1 c2: imp)
  | If (b: exp) (t e: imp)
  | While (b: exp) (c: imp).

• Give a denotation to imp 
• That is executable 

• Suitable to verify a compiler

Our objective:
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Everyone’s Favorite  
Case Study: Imp

Inductive imp : Type :=
  | Skip  
  | Assign (x: var) (e: exp)
  | Seq (c1 c2: imp)
  | If (b: exp) (t e: imp)
  | While (b: exp) (c: imp).

• Give a denotation to imp 
• That is executable 

• Suitable to verify a compiler

Our objective:

Proceeds in two steps

1. Syntax is denoted in terms of itrees;

2. Events contained in the trees are given a semantics into a monad.
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Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
  match c with 
  | Skip           => ret tt
  | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
  | Seq c1 c2  => den_imp c1 ;; den_imp c2
  | If b t e        => v <- den_exp b ;; 
                            if is_true v then den_imp t else den_imp e
  | While b c   => ???
  end.

Denotation of imp in term of itrees:

20
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An Iteration Combinator

den_imp (while b do c) =?  
    v <- den_exp b ;; 
    if is_true v  
    then den_imp c ;; den_imp (while b do c) 
    else ret tt

One would like to write:

Continuation trees:
Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:
• They can be composed;

• They support case analysis;
• They can be iterated over!

k1 >>> k2
case k1 k2
iter k
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An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:
CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
   fun a => ab <- body a ;; 
                  match ab with
                  | inl a => Tau (iter body a) 
                  | inr b => Ret b 
                  end.
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An Iteration Combinator
Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

den_imp (while b do c) =?  
    v <- den_exp b ;; 
    if is_true v  
    then den_imp c ;; den_imp (while b do c) 
    else ret tt

One would like to write:
den_imp (while b do c) = iter  
    (fun _ => v <- den_exp b ;; 
                    if is_true v  
                    then den_imp c ;; ret (inl tt) 
                    else ret (inr tt))

One can write:

CoFixpoint iter (body: ktree E A (A + B)): ktree E A B :=
   fun a => ab <- body a ;; 
                  match ab with
                  | inl a => Tau (iter body a) 
                  | inr b => Ret b 
                  end.

New iteration (guarded)
Termination
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Imp Programs as ITrees

Fixpoint den_imp (c: imp): itree E_imp unit :=
  match c with 
  | Skip           => ret tt
  | Assign x e => v <- den_exp e ;; trigger (GetVar v)
  | Seq c1 c2  => den_imp c1 ;; den_imp c2
  | If b t e        => v <- den_exp b ;; 
                            if is_true v then den_imp t else den_imp e
  | While b c   => iter (fun _ => v <- den_exp b ;; 
                                                   if is_true v  
                                                   then den_imp c ;; ret (inl tt) 
                                                   else ret (inr tt))

Denotation of imp in term of itrees:

Are we done?
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Fixpoint den_imp (c: imp): itree E_imp unit :=
  match c with 
  | Skip           => ret tt
  | Assign x e => v <- den_exp e ;; trigger (GetVar v)
  | Seq c1 c2  => den_imp c1 ;; den_imp c2
  | If b t e        => v <- den_exp b ;; 
                            if is_true v then den_imp t else den_imp e
  | While b c   => iter (fun _ => v <- den_exp b ;; 
                                                   if is_true v  
                                                   then den_imp c ;; ret (inl tt) 
                                                   else ret (inr tt))

Denotation of imp in term of itrees:

Are we done?

Let’s add some semantic to the mix
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  | ERead (x: var)                 : E_imp value
  | EWrite (x: var) (v: value): E_imp unit
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Giving Meaning to Events:  
Handlers

Inductive E_imp : Type -> Type := 
  | ERead (x: var)                 : E_imp value
  | EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M. Notation: 
   E ~> M  forall X, E X -> M X≜

Definition h_imp : E_imp ~> stateT (itree voidE) :=
  fun X e s => match e with
                        | ERead x    => Ret (s            , s[x])
                        | EWrite x v => Ret (s[x <- v], tt    )
                       end

Let's handle E_imp into the state monad.
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Lifting Meaning to ITrees:  
Interpreters

interp (h: E ~> M):  itree E R ~> M R

The library provides an interpretation function:

Class MonadIter (M : Type -> Type) : Type :=
  iter : forall {R A: Type}  
                    (body: A -> M (A + R)),  
                     A -> M R.

Assuming that the monad M supports a notion of iteration:
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Lifting Meaning to ITrees:  
Interpreters

interp (h: E ~> M):  itree E R ~> M R

The library provides an interpretation function:

Class MonadIter (M : Type -> Type) : Type :=
  iter : forall {R A: Type}  
                    (body: A -> M (A + R)),  
                     A -> M R.

Assuming that the monad M supports a notion of iteration:

• itree E 
• Prop

supports it preserves it

• stateT M 

• readerT M 
• optionT M 

• eitherT M

} }
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Denotational, Yet Executable
ITrees are coinductive: they can therefore be extracted  

to an OCaml lazy structure!

let rec run t = 
   match t with 
   | Ret r      -> r  
   | Tau t      -> run t 
   | Vis (e,k) -> handle e (fun x -> run (k x)) 

Simply requires a minimal driver in OCaml:

• Nothing to do in the case of our Imp language: all events are interpreted in Coq 

• In general, leaves the leisure to write unverified handlers in OCaml



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈
• Congruence Laws:  (t1  t2   k1  k2)  (t1 ;; k1)  (t2 ;; k2)         ≈ ∧ ·≈ → ≈



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈
• Congruence Laws:  (t1  t2   k1  k2)  (t1 ;; k1)  (t2 ;; k2)         ≈ ∧ ·≈ → ≈
• Monoidal Laws:       (inl >>> case h k)  h                                          ·≈



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈
• Congruence Laws:  (t1  t2   k1  k2)  (t1 ;; k1)  (t2 ;; k2)         ≈ ∧ ·≈ → ≈
• Monoidal Laws:       (inl >>> case h k)  h                                          ·≈
• Iteration Laws:        (iter f)   (f >>> case (iter f) id)                           ·≈



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈
• Congruence Laws:  (t1  t2   k1  k2)  (t1 ;; k1)  (t2 ;; k2)         ≈ ∧ ·≈ → ≈
• Monoidal Laws:       (inl >>> case h k)  h                                          ·≈
• Iteration Laws:        (iter f)   (f >>> case (iter f) id)                           ·≈
• Interp Laws:            (interp h (trigger e))  h e  

                                (interp h (t ;; k))  (x  interp h t ;; interp h (k x))   
≈

≈ ←



Yannick ZAKOWSKI December 18th, 2019/ 4027

What About Reasoning? 

Rich equational reasoning over eutt (excerpt)

• Monad Laws:           (x  t ;; x)  t                                                         ← ≈
• Structural Laws:      (Tau t)  t                                                               ≈
• Congruence Laws:  (t1  t2   k1  k2)  (t1 ;; k1)  (t2 ;; k2)         ≈ ∧ ·≈ → ≈
• Monoidal Laws:       (inl >>> case h k)  h                                          ·≈
• Iteration Laws:        (iter f)   (f >>> case (iter f) id)                           ·≈
• Interp Laws:            (interp h (trigger e))  h e  

                                (interp h (t ;; k))  (x  interp h t ;; interp h (k x))   
≈

≈ ←

~> Most proofs about itrees are purely based on rewriting

Support for setoid-based rewriting
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A Side Product
In the process of establishing this equational theory,  

we worked with Gil Hur on an extension of paco
• Richer reasoning principles  

(fixed a deficiency of paco in the presence of nested  cofixed-points); 
• Fully backward compatible with paco; 

• An approach to up-to reasoning principles discriminating  
between strong and weak guards; 

• Come see the talk at CPP in January for more!



Yannick ZAKOWSKI December 18th, 2019/ 4029

A Verified Compiler you Said?

• Similar process over asm, an assembly like language; 
• Compiler from imp to asm; 

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:
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A Verified Compiler you Said?

Documented as a tutorial: 
https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial

• Similar process over asm, an assembly like language; 
• Compiler from imp to asm; 

• Proof of correctness:  
expressed as a bisimulation up-to tau, using the eutt relation.

Case study presented in the paper:

• Correctness of the control flow proved independently; 
• Termination sensitive, yet inductive proof; 

• Almost entirely based on rewriting.

Key characteristics of the approach:

https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial
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ITrees Used in Projects

Embeds Haskell programs in Coq to verify them

ITrees are embedded into VST's assertions  
to specify C programs

ITrees instantiated with two different interfaces 
specify the server and its implementation

ITree-based specifications are used as a model  
generating test tracing to check again



A Modular Semantics for LLVM’s IR  
Based on ITrees (Work In Progress) 
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Example LLVM Code
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%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:

define @factorial(%n) {

}
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Vellvm: version 1 (2013)

34 December 18th, 2019/ 40

A success inspired by CompCert:

• A large fragment of (sequential) LLVM covered 

• A small step operational semantics  
• Complex transformations proved correct (mem2reg, …)

With its limitations:

• A monolithic development 

• Hard to maintain, difficult to expand 
• Complex proofs involved

Can interaction trees help to develop a new semantics 
 that enjoys more modularity?
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Definition denote_llvm (p: llvm): itree E_llvm value := …

What kind of events can an llvm computation trigger?

• Global state

• Local state

• Stack of local frames

• Memory
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To Some Extent: Same Story 
on Another Scale

%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc
br label %start

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

loop:

entry:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

%12 = load %acc
ret %12

body: post:
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den_block: ktree instr_E bid (bid + value)

It’s a fixed-point!

den_block := iter …
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A Chain of Interpreters

itree E_llvm value

denote_llvm p

itree E0 value
interp_intrinsics

itree E1 (gstate * value)
interp_globals

itree E2 (lstack * (gstate * value))
interp_locals

itree E3 (memory * (lstack * (gstate * value))) interp_memory

itree E4 (memory * (lstack * (gstate * value))) -> Prop

model_undef

itree E5 (memory * (lstack * (gstate * value))) -> Prop

model_UB

itree E4 (memory * (lstack * (gstate * value)))

itree E5 (memory * (lstack * (gstate * value)))

execute_undef

fail_UB
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The full story has more to say, including about:

• Treatment of poison and undef; 
• Mutually recursive definition of functions; 

• Memory model; 
• Hierarchy of refinements.

This is still a work in progress, but it can be followed on Github: 
https://github.com/vellvm/vellvm

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations  
is in progress.

Already a user: Vadim Zaliva compiles Helix to Vellvm!

https://github.com/vellvm/vellvm
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• Expressive combinators to build and compose them; 
• A family of interpreters of itrees into monads; 

• A rich equational theory to reason up-to taus about them; 

• Tutorial to prove a compiler correct using itrees.

A modular Vellvm using ITrees (in progress):

• A new completely denotational semantics; 
• A chain of interpreters allowing for both a model and an executable; 

• Notions of refinements inheriting from itree’s equational theory.

Generalized Parameterized Coinduction (CPP’20):
• Extends the paco library in a backward-compatible way; 

• Demonstrates how to axiomatize reasoning up-to tau 
in a way sensitive to strong/weak guards.

Two early prospects:

• Denoting CCS as ITrees; 

• Dijkstra’s monad for ITrees.


