From Representing Recursive
and Impure Programs in Coq to

a Modular Formal Semantics of
LLVM IR

Yannick Zakowski

Yannick ZAKOWSKI December 18th, 2019

Introduction:
The DeepSpec NSF Expedition

LS

A Cross-Institutions
Enterprise...

Uiy
notitan® PRINCETON % Penn Yal e

Technology UNIVERSITY

Chlipala Appel Berenger Pierce Wierich Zdancewic Shao

Yannick ZAKOWSKI December 18th, 2019

... Encompassing a Variety of
Projects!

CERTIKOS Rich

X

§ Specifications with a shared philosophy
I

More than functional specification

Live
C°"7 Spec Connected to executable artifacts
Verified Formal
S |deally, machine-checked
Toolchain
Two-sided

Interfaced to both client
and implementation

Yannick ZAKOWSKI December 18th, 2019

Ambition: Full Stack Verified
Artifacts

Beyond a shared philosophy:

l |§ combining these efforts
CERTIKOS Kami + CertiKOS + VST + QuickChick
Verified Web Server?
eep Core Spec
specC
Verified
§Soﬂware eep
Toolchain SpeC
server

IVeuvm]

Yannick ZAKOWSKI December 18th, 2019

Ambition: Full Stack Verified
Artifacts

Property-based testing in Coq

Decidable Gallina functions

Verified Toolchain to prove properties of
%?“ﬁ\ffé compiled C programs
Separation Logic + CompCert
l lg Verified OS Kernel
Il Certified Abstraction Layers
CERTIKOS

Framework for verified
Blue-Spec-style components

Labelled Transition Systems

Yannick ZAKOWSKI December 18th, 2019

Ambition: Full Stack Verified
Artifacts

Property-based testing in Coq

Decidable Gallina functions

Verified Toolchain to prove properties of

%?“ﬁ\ffé compiled C programs
Separation Logic + CompCert
Swap Server (now)
Il -
l Verified OS Kernel HTTP Server (ongoing)

Il Certified Abstraction Layers

CERTIKOS

Framework for verified
Blue-Spec-style components

Labelled Transition Systems

Yannick ZAKOWSKI December 18th, 2019

Ambition: Full Stack Verified
Artifacts

Property-based testing in Coq

Decidable Gallina functions

Verified Toolchain to prove properties of

%?“ﬁ\ffé compiled C programs
Separation Logic + CompCert
Swap Server (now)
Il -
l Verified OS Kernel HTTP Server (ongoing)

Il Certified Abstraction Layers

CERTIKOS

Framework for verified

Blue-Spec-style components Specification could use

a Franca Lingua!

Labelled Transition Systems

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees:
Representing Recursive and Impure
Programs in Coq

Ly

Cahiers de Doléances

Able to model very diverse impure specifications

A C-implementation of a web-server

aSSl <> l

Ji
spec 'la

server CERTIKOS

The interface exposed by CertiKOS

Easily linked to executable implementation

Testing specifications
Verified executed web-server

Convenient source of definitional interpreters

Yannick ZAKOWSKI December 18th, 2019

Cahiers de Doléances

Formalised in the Coq Proof Assistant

Strongly normalizing: how to represent divergence?

Pure: how to represent effects?

Amenable to large scale proofs
Modular specification
Equational reasoning

Practical library

Yannick ZAKOWSKI December 18th, 2019

Cahiers de Doléances

Specification of impure computations in the Coq proof assistant
supporting extraction and modular reasoning

Interaction Trees

Representing Recursive and Impure Programs in Coq

LI-YAO XIA, University of Pennsylvania, USA

YANNICK ZAKOWSKI, University of Pennsylvania, USA
PAUL HE, University of Pennsylvania, USA

CHUNG-KIL HUR, Seoul National University, Republic of Korea
GREGORY MALECHA, BedRock Systems, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA
STEVE ZDANCEWIC, University of Pennsylvania, USA

Yannick ZAKOWSKI December 18th, 2019

Cahiers de Doléances

Specification of impure computations in the Coq proof assistant
supporting extraction and modular reasoning

DISTINGUISHED PAPER

Representing Recursive and Impure Programs in Coq

Interaction Trees

LI-YAO XIA, University of Pennsylvania, USA

YANNICK ZAKOWSKI, University of Pennsylvania, USA
PAUL HE, University of Pennsylvania, USA

CHUNG-KIL HUR, Seoul National University, Republic of Korea
GREGORY MALECHA, BedRock Systems, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA
STEVE ZDANCEWIC, University of Pennsylvania, USA

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive/itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,
which may return a value of type R,

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,
which may return a value of type R,
while emitting during its execution events from the interface E.

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,
which may return a value of type R,
while emitting during its execution events from the interface E.

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,
which may return a value of type R,
while emitting during its execution events from the interface E.

Yannick ZAKOWSKI December 18th, 2019

Interaction Trees

Colnductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Tau (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:
a potentially diverging computation,
which may return a value of type R,
while emitting during its execution events from the interface E.

Relates to many existing works in the litterature:
* Composible effects: Kiselyov & Ishii’'s Freer monad
* Partial function in type theory: Capretta’s Delay monad
* Effectful computations in Type Theory: Hancock, McBride’s general monad

* Effectful Programs in Coq: Letan & Gianas’s FreeSpec

Yannick ZAKOWSKI December 18th, 2019

ITrees Come in All Shapes and
Forms

Yannick ZAKOWSKI December 18th, 2019

ITrees Come in All Shapes and
Forms

Pure computations Ret 1789
Tau (Tau (Ret 1776)) T T

Yannick ZAKOWSKI December 18th, 2019

ITrees Come in All Shapes and
Forms

Pure computations Ret 1789
Tau (Tau (Ret 1776)) T T
Silent divergence CoFixpoint spin := Tau spin Tttt)ttt 1)

Yannick ZAKOWSKI December 18th, 2019

ITrees Come in All Shapes and
Forms

Pure computations Ret 1789
Tau (Tau (Ret 1776)) T T
Silent divergence CoFixpoint spin := Tau spin Tttt)ttt 1)

k true 1789

Tau (Tau (Vis e

(fun b => match b with T T u
Effectful computation | true => Ret 1789
| false => Tau (Ret 1776)
end))) kfalse [T

Yannick ZAKOWSKI December 18th, 2019

ITrees Come in All Shapes and
Forms

k, b T T T T ky 1

k,d T T T T T T T T T

Failure: event of return type void

Yannick ZAKOWSKI December 18th, 2019

Composing Computations:
the ITree Monad

Monadic structure
Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (i: itree E R) (k: R -> itree E S): itree E S :=

Yannick ZAKOWSKI December 18th, 2019

Composing Computations:
the ITree Monad

Monadic structure
Definition ret {X: Type} (x: X): itree E X := Ret x

CoFixpoint bind {R S} (i: itree E R) (k: R -> itree E S): itree E S :=
match t with
| Retr =>Kkr
| Taut =>Tau (bind t k)
| Vis e h => Vis e (fun x => bind (h x) k)
end.

Yannick ZAKOWSKI December 18th, 2019

Composing Computations:
the ITree Monad

Monadic structure
Definition ret {X: Type} (x: X): itree E X := Ret x

Notation:
CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := X<-s;;K
match t with
| Retr =>kr bind s (fun x => k)

| Taut =>Tau (bind t k)
| Vis e h => Vis e (fun x => bind (h x) k)
end.

Yannick ZAKOWSKI December 18th, 2019

Composing Computations:
the ITree Monad

Monadic structure
Definition ret {X: Type} (x: X): itree E X := Ret x

Notation:
CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := X<-s;;K
match t with
| Retr =>kr bind s (fun x => k)

| Taut =>Tau (bind t k)
| Vis e h => Vis e (fun x => bind (h x) k)
end.

Monad laws:

ret_bind: x<-retv;;kx =~ kv
bind_ret: x<-t; retx ~ t

bind_bind: x<-(y<s;t);;u X y<-s;x<t;u

Yannick ZAKOWSKI December 18th, 2019

Composing Computations:
the ITree Monad

Monadic structure
Definition ret {X: Type} (x: X): itree E X := Ret x

Notation:
CoFixpoint bind {R S} (t: itree E R) (k: R -> itree E S): itree E S := X<-s;;K
match t with
| Retr =>kr bind s (fun x => k)

| Taut =>Tau (bind t k)
| Vis e h => Vis e (fun x => bind (h x) k)
end.

Monad laws:

ret_bind: x<-retv;;kx ‘& kv

bind_ret: x<-t;;retx ~ ot ITree equivalence?

bind_bind: x<-(y<-s;t);;u & y<-s;x<t;u

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Option 1: Coqg’s propositional equality?

A

t~ s t =s

Inductive eq {X: Type}: Prop :=
| eq_refl: forall (x: X), eq x x.

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Option 1: Coqg’s propositional equality?

A

t~ s t =s

Inductive eq {X: Type}: Prop :=
| eq_refl: forall (x: X), eq x x.

¥ spin = Tau spin

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Option 2: Strong bisimulation?

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Option 2: Strong bisimulation?
t ¥ s = bisimts
Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=
| EqRet: bisimF (Ret v) (Ret v)
| EqTau: simts -> bisimF sim (Tau t) (Tau s)

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> bisimF sim (Vis e k1) (Vis e k2)

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t s = bisimts

Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=

—J | EqRet: bisimF (Ret v) (Ret v) ~

| EqTau: simts -> bisimF sim (Tau t) (Tau s)

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> bisimF sim (Vis e k1) (Vis e k2)

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t s = bisimts

Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=

| EqRet: bisimF (Ret v) (Ret v) ~

= | EqTau: sim t s -> bisimF sim (Tau t) (Tau s) T ~

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> bisimF sim (Vis e k1) (Vis e k2)

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t ¥ s = bisimts
Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=
| EqRet: bisimF (Ret v) (Ret v) ~

| EqTau: simts -> bisimF sim (Tau t) (Tau s) . ~

o | EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))

-> bisimF sim (Vis e k1) (Vis e k2)

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t ¥ s = bisimts
Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=
| EqRet: bisimF (Ret v) (Ret v) ~

| EqTau: simts -> bisimF sim (Tau t) (Tau s) . ~

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))

-> bisimF sim (Vis e k1) (Vis e k2)

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t ¥ s = bisimts
Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=
| EqRet: bisimF (Ret v) (Ret v)
| EqTau: simts -> bisimF sim (Tau t) (Tau s)

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> bisimF sim (Vis e k1) (Vis e k2)

bisimts paco bisimF bot

https://github.com/snu-st/paco

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Option 2: Strong bisimulation?
t ¥ s = bisimts
Inductive bisimF (sim: relation (itree E R)): relation (itree E R) :=
| EqRet: bisimF (Ret v) (Ret v)
| EqTau: simts -> bisimF sim (Tau t) (Tau s)

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> bisimF sim (Vis e k1) (Vis e k2)

- Tau spin = spin

bisimts paco bisimF bot

https://github.com/snu-st/paco

Yannick ZAKOWSKI December 18th, 2019

https://github.com/snu-sf/paco

| Tree Equivalence

Equivalence Up-To Tau

A/ T 1789

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Equivalence Up-To Tau

t~s = euttts
Inductive euttF (sim: relation (itree E R)): relation itree ER :=
| EqRet: euttF (Ret v) (Ret v)

| EqTau: simts -> euttF sim (Tau t) (Tau s)

A/ T 1789

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> euttF sim (Vis e k1) (Vis e k2)

| EqTauL: euttF simt s -> euttF sim (Taut) s

vy

| EqTauR: euttF sim t s -> euttF sim t (Tau s)

euttts = paco euttF bot2

https://github.com/snu-st/paco

Yannick ZAKOWSKI December 18th, 2019

| Tree Equivalence

Equivalence Up-To Tau

t~s = euttts
Inductive euttF (sim: relation (itree E R)): relation itree ER :=
| EqRet: euttF (Ret v) (Ret v)

| EqTau: simts -> euttF sim (Tau t) (Tau s)

A/ T 1789

| EqVis (e: E X): (forall (v: X), sim (k1 v) (k2 v))
-> euttF sim (Vis e k1) (Vis e k2)

| EqTauL: euttF simt s -> euttF sim (Taut) s

spin %

vy

| EqTauR: euttF sim t s -> euttF sim t (Tau s)

euttts = paco euttF bot2

https://github.com/snu-st/paco

Yannick ZAKOWSKI December 18th, 2019

| Trees so Far

A coinductive datastructure representing computations;
Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.

Yannick ZAKOWSKI December 18th, 2019

| Trees so Far

A coinductive datastructure representing computations;
Which forms a monad;

Whose notion of equivalence is bisimilarity up-to Tau.

Let’s try using them!

Yannick ZAKOWSKI December 18th, 2019

Everyone’'s Favorite
Case Study: Imp

Inductive imp : Type :=
| Skip Our objective:

| Assign (x: var) (e: exp) Give a denotation to imp
| Seq (c1 c2: imp)

| If (b: exp) (t e: imp)
| While (b: exp) (c: imp).

That is executable
Suitable to verify a compiler

Yannick ZAKOWSKI December 18th, 2019

Everyone’'s Favorite
Case Study: Imp

Inductive imp : Type :=
| Skip Our objective:

| Assign (x: var) (e: exp) Give a denotation to imp
| Seq (c1 c2: imp)

| If (b: exp) (t e: imp)
| While (b: exp) (c: imp).

That is executable
Suitable to verify a compiler

Proceeds in two steps

1. Syntax is denoted in terms of itrees;

2. Events contained in the trees are given a semantics into a monad.

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
=P | Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
=P | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??
end.

Effect interface of Imp:

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
=P | Assign x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??

end.
Effect interface of Imp: Minimal effectful computation:
Inductive E_imp : Type -> Type := Definition trigger {E X}(e: E X): itree E X :=
| ERead (x: var) : E_imp value Vis e (fun x => Ret x)

| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
= | Seqcl1c2 =>den_imp c1;; den_imp c2
|Ifbte =>v<-den_expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??

end.
Effect interface of Imp: Minimal effectful computation:
Inductive E_imp : Type -> Type := Definition trigger {E X}(e: E X): itree E X :=
| ERead (x: var) : E_imp value Vis e (fun x => Ret x)

| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
=P |lfbte =>v<-den expb;;
if is_true v then den_imp t else den_imp e
| Whilebc =>?7??

end.
Effect interface of Imp: Minimal effectful computation:
Inductive E_imp : Type -> Type := Definition trigger {E X}(e: E X): itree E X :=
| ERead (x: var) : E_imp value Vis e (fun x => Ret x)

| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=

match ¢ with

| Skip => ret tt

| Assigh x e => v <- den_exp e ;; trigger (EWrite x v)

| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2

|Ifbte =>v<-den_expb;;

if is_true v then den_imp t else den_imp e

= | Whilebc =>7???

end.
Effect interface of Imp: Minimal effectful computation:
Inductive E_imp : Type -> Type := Definition trigger {E X}(e: E X): itree E X :=
| ERead (x: var) : E_imp value Vis e (fun x => Ret x)

| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

One would like to write:

den_imp (while b do c) =?
v<-den_expb ;;
ifis_true v
then den_imp ¢ ;; den_imp (while b do c)
else ret tt

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

One would like to write:

den_imp (while b do c) =?
v<-den_expb ;;
ifis_true v
then den_imp ¢ ;; den_imp (while b do c)
else ret tt

Continuation trees:

Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

One would like to write:

den_imp (while b do c) =?
v<-den_expb ;;
ifis_true v
then den_imp ¢ ;; den_imp (while b do c)
else ret tt

Continuation trees:

Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:

They can be composed,; K1 >>> k2

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

One would like to write:

den_imp (while b do c) =?
v<-den_expb ;;
ifis_true v
then den_imp ¢ ;; den_imp (while b do c)
else ret tt

Continuation trees:

Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:

They can be composed,; K1 >>> k2
They support case analysis; case k1 k2

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

One would like to write:

den_imp (while b do c) =?
v<-den_expb ;;
ifis_true v
then den_imp ¢ ;; den_imp (while b do c)
else ret tt

Continuation trees:

Definition ktree E A B := A -> itree E B.

Continuation trees have a nice structure:

They can be composed,; K1 >>> k2
They support case analysis; case k1 k2
They can be iterated over! iter k

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

CoFixpoint iter (body: ktree E A (A + B)): ktree EA B :=
fun a =>ab <- body a ;;
match ab with
| inl a => Tau (iter body a)
linrb=>Retb
end.

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

CoFixpoint iter (body: ktree E A (A + B)): ktree EA B :=
fun a =>ab <- body a ;;
match ab with
| inl a => Tau (iter body a)
linr b=>Retb <4— Termination
end.

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

CoFixpoint iter (body: ktree E A (A + B)): ktree EA B :=
fun a =>ab <- body a ;;
match ab with

| inl a => Tau (iter body a) <4— New iteration (guarded)
linrb=>Retb <4— Termination
end.

Yannick ZAKOWSKI December 18th, 2019

An lteration Combinator

Continuation trees:

Definition ktree E A B := A -> itree E B.

Iteration combinator:

CoFixpoint iter (body: ktree E A (A + B)): ktree EA B :=
fun a =>ab <- body a ;;
match ab with

| inl a => Tau (iter body a) <— New iteration (guarded)
linrb=>Retb <4— Termination
end.
One would like to write: One can write:
den_imp (while b do ¢) =? den_imp (while b do c) = iter

v<-den_expb ;; (fun _=>v<-den_expb ;;

ifis_true v ifis_true v

then den_imp ¢ ;; den_imp (while b do ¢) then den_imp c ;; ret (inl tt)

else ret tt else ret (inr tt))

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assign x e => v <- den_exp e ;; trigger (GetVar v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>V <-den_exp b ;;
if is_true v then den_imp t else den_imp e
| While bc =>iter (fun _=>v<-den_expb ;;
ifis truev
then den_imp c ;; ret (inl tt)
else ret (inr tt))

Are we done?

Yannick ZAKOWSKI December 18th, 2019

Imp Programs as | lrees

Denotation of imp in term of itrees:

Fixpoint den_imp (c: imp): itree E_imp unit :=
match ¢ with
| Skip => ret tt
| Assign x e => v <- den_exp e ;; trigger (GetVar v)
| Seq c1 ¢c2 =>den_imp c1 ;; den_imp c2
|Ifbte =>V <-den_exp b ;;
if is_true v then den_imp t else den_imp e
| While bc =>iter (fun _=>v<-den_expb ;;
ifis truev
then den_imp c ;; ret (inl tt)
else ret (inr tt))

Are we done?

Let’s add some semantic to the mix

Yannick ZAKOWSKI December 18th, 2019

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Yannick ZAKOWSKI December 18th, 2019

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M.

Yannick ZAKOWSKI December 18th, 2019

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M. Notationi\
E~>M=forall X, EX->MX

Yannick ZAKOWSKI December 18th, 2019

Giving Meaning to Events:
Handlers

Inductive E_imp : Type -> Type :=
| ERead (x: var) : E_imp value
| EWrite (x: var) (v: value): E_imp unit

Events are given meaning by handling them into monads:

Definition handler (E M: Type -> Type) := E ~> M. Notation:

E~>M=2forall X, EX->M X

Let's handle E_imp into the state monad.

Definition h_imp : E_imp ~> stateT (itree voidE) :=
fun X e s = match e with

| ERead x =>Ret (s , S[x])
| EWrite x v =>Ret (s[x <-v],tt)
end

Yannick ZAKOWSKI December 18th, 2019

Lifting Meaning to I Trees:
Interpreters

The library provides an interpretation function:

interp (h: E~>M): itreeER~>MR

Assuming that the monad M supports a notion of iteration:

Class Monadlter (M : Type -> Type) : Type :=
iter : forall {R A: Type}
(body: A-> M (A + R)),
A->MR.

Yannick ZAKOWSKI December 18th, 2019

Lifting Meaning to I Trees:
Interpreters

The library provides an interpretation function:

interp (h: E~>M): itreeER~>MR

Assuming that the monad M supports a notion of iteration:

Class Monadlter (M : Type -> Type) : Type :=
iter : forall {R A: Type}
(body: A-> M (A + R)),

A ->MR.
stateT M
tree E } supports it reader! M reserves it
Prop PP optionT M "
eitherT M

Yannick ZAKOWSKI December 18th, 2019

Denotational, Yet Executable

ITrees are coinductive: they can therefore be extracted
to an OCaml lazy structure!

Yannick ZAKOWSKI December 18th, 2019

Denotational, Yet Executable

ITrees are coinductive: they can therefore be extracted
to an OCaml lazy structure!

Simply requires a minimal driver in OCaml:

letrecrunt=
match t with
| Retr ->r
| Taut ->runt
| Vis (e,k) -> handle e (fun x -> run (k x))

Yannick ZAKOWSKI December 18th, 2019

Denotational, Yet Executable

ITrees are coinductive: they can therefore be extracted
to an OCaml lazy structure!

Simply requires a minimal driver in OCaml:

letrecrunt=
match t with
| Retr ->r
| Taut ->runt
| Vis (e,k) ->'handle e (fun x -> run (k x))

Nothing to do in the case of our Imp language: all events are interpreted in Coq
In general, leaves the leisure to write unverified handlers in OCaml

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t

Structural Laws: (Tau t) &~ t

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t
Structural Laws: (Tau t) &~ t
Congruence Laws: (t1 & t2 A k1 = k2) — (11 ;; k1) =~ (12 ;; k2)

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t

Structural Laws: (Tau t) &~ t

Congruence Laws: (t1 & t2 A k1 = k2) — (11 ;; k1) =~ (12 ;; k2)
Monoidal Laws: (inl >>> case h k) & h

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t

Structural Laws: (Tau t) &~ t

Congruence Laws: (t1 & t2 A k1 = k2) — (11 ;; k1) =~ (12 ;; k2)
Monoidal Laws: (inl >>> case h k) & h

Iteration Laws: (iter f) = (f >>> case (iter f) id)

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t
Structural Laws: (Tau t) &~ t
Congruence Laws: (t1 & t2 A k1 = k2) — (11 ;; k1) =~ (12 ;; k2)

Monoidal Laws: (inl >>> case h k) & h
lteration Laws: (iter f) = (f >>> case (iter f) id)
Interp Laws: (interp h (triggere)) ® h e

(interp h (t;; k)) = (x < interp h t;; interp h (k x))

Yannick ZAKOWSKI December 18th, 2019

What About Reasoning?

Rich equational reasoning over eutt (excerpt)

Monad Laws: (X —t;;x)~t
Structural Laws: (Tau t) &~ t
Congruence Laws: (t1 & t2 A k1 = k2) — (11 ;; k1) =~ (12 ;; k2)

Monoidal Laws: (inl >>> case h k) & h
lteration Laws: (iter f) = (f >>> case (iter f) id)
Interp Laws: (interp h (triggere)) ® h e

(interp h (t;; k)) = (x < interp h t;; interp h (k x))
Support for setoid-based rewriting

~> Most proofs about itrees are purely based on rewriting

Yannick ZAKOWSKI December 18th, 2019

A Side Product

In the process of establishing this equational theory,
we worked with Gil Hur on an extension of paco

Richer reasoning principles

(fixed a deficiency of paco in the presence of nested cofixed-points);
Fully backward compatible with paco;

An approach to up-to reasoning principles discriminating

between strong and weak guards;

Come see the talk at CPP in January for more!

An Equational Theory for Weak Bisimulation via
Generalized Parameterized Coinduction

Yannick Zakowski Chung-kil Hur
University of Pennsylvania Seoul National University
Philadelphia, PA, USA Seoul, Republic of Korea
Paul He Steve Zdancewic
University of Pennsylvania University of Pennsylvania
Philadelphia, PA, USA Philadelphia, PA, USA

Yannick ZAKOWSKI December 18th, 2019

A Verified Compiler you Said?

Case study presented in the paper:

Similar process over asm, an assembly like language;
Compiler from imp to asm;

Proof of correctness:

expressed as a bisimulation up-to tau, using the eutt relation.

Yannick ZAKOWSKI December 18th, 2019

A Verified Compiler you Said?

Case study presented in the paper:

Similar process over asm, an assembly like language;
Compiler from imp to asm;

Proof of correctness:

expressed as a bisimulation up-to tau, using the eutt relation.

deny,, Interppy,,
1% > l‘IE > tlg
mp mp
eutli% .
Y denyg, interpye, "
F 2
Cg(p) > tasm tasm

Yannick ZAKOWSKI December 18th, 2019

A Verified Compiler you Said?

Case study presented in the paper:

Similar process over asm, an assembly like language;
Compiler from imp to asm;

Proof of correctness:

expressed as a bisimulation up-to tau, using the eutt relation.

Key characteristics of the approach:

Correctness of the control flow proved independently;
Termination sensitive, yet inductive proof;
Almost entirely based on rewriting.

Yannick ZAKOWSKI December 18th, 2019

A Verified Compiler you Said?

Case study presented in the paper:

Similar process over asm, an assembly like language;
Compiler from imp to asm;

Proof of correctness:
expressed as a bisimulation up-to tau, using the eutt relation.

Key characteristics of the approach:

Correctness of the control flow proved independently;
Termination sensitive, yet inductive proof;
Almost entirely based on rewriting.

Documented as a tutorial:

https://github.com/DeepSpec/interactionTrees/tree/master/tutorial

Yannick ZAKOWSKI December 18th, 2019

https://github.com/DeepSpec/InteractionTrees/tree/master/tutorial

I Trees Used in Projects

N

Core Spec

deep

SpecC
Server

Verified
Software
Toolchain

Embeds Haskell programs in Coq to verify them

ITrees instantiated with two different interfaces
specify the server and its implementation

ITrees are embedded into VST's assertions
to specify C programs

ITree-based specifications are used as a model
generating test tracing to check again

Yannick ZAKOWSKI December 18th, 2019

A Modular Semantics for LLVM’s IR
Based on ITrees (Work In Progress)

LT

Vellvm: a Formal Semantics
for LLVM

Active participants Past participants

Jianzhou Zhao

Milo M.K. Martin
Santosh Nagarakatte
Dmitri Garbuzov
William Mansky
Christine Rizkallah
Olek Gierczak

Gil Hur
Jeehon Kang
Viktor Vafeiadis

Steve Zdancewic Calvin Beck

Yannick ZakowskKi

Yannick ZAKOWSKI December 18th

Example LLVM Code

define @factorial(%n) { entry:

%1l = alloca
gacc = alloca
store %n, %1
store 1, %acc
br label %$start

loop:

%3 load %1
%4 icmp sgt %3, 0
br %4, label %then, label %else

body: post:
%6 = load %acc %12 = load %acc
7 = load %1 ret %12

%8 = mul %6, %7
store %8, %acc
%29 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI December 18th, 2019

Vellvm: version 1 (2013)

A success inspired by CompCert:

A large fragment of (sequential) LLVM covered
A small step operational semantics
Complex transformations proved correct (memZ2reg, ...)

With its limitations:

A monolithic development
Hard to maintain, difficult to expand
Complex proofs involved

Can interaction trees help to develop a new semantics
that enjoys more modularity?

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?
Global state

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?
Global state

Local state

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?
Global state
Local state

Stack of local frames

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state
MPush/MPop
Stack of local frames Load(t,1)/Store(a,v)
Memory — Alloca(t)
GEP(t,v,vs)
Ptol(a)/ltoP(i)

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state
MPush/MPop
Stack of local frames Load(t,1)/Store(a,v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Ptol(a)/ltoP(i)

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state

MPush/MPop
Stack of local frames Load(t /Store(a.v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Undefined Behavior Ptol(a)/ItoP(i)

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state

MPush/MPop
Stack of local frames Load(t /Store(a.v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Undefined Behavior Ptol(a)/ItoP(i)

Calls

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state

MPush/MPop
Stack of local frames Load(t /Store(a.v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Undefined Behavior Ptol(a)/ltoP(i)
Calls
Debugging

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state

MPush/MPop
Stack of local frames Load(t /Store(a.v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Undefined Behavior Ptol(a)/ltoP(i)
Calls
Debugging
Failure

Yannick ZAKOWSKI December 18th, 2019

Well... Let's Start at the
Beginning!

Definition denote_llvm (p: llvm): itree E_llvm value :=...

What kind of events can an llvm computation trigger?

Global state
Local state
MPush/MPop
Stack of local frames Load(t,1)/Store(a,v)
Memory — Alloca(t)
Pick GEP(t,v,vs)
Undefined Behavior Ptol(a)/ItoP(i)
Calls
Debugging Raises challenges to compose interfaces!
Failure

Yannick ZAKOWSKI December 18th, 2019

To Some Extent: Same Story

on Another Scale

entry:

%1 = alloca
gacc = alloca
store %n, %1
store 1, $%acc
br label %$start

loop:
%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

body: post:
%$6 = load %acc %$12 = load %acc
%7 = load %1 ret %12

%28 = mul %6, %7

store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI

December 18th, 2019

To Some Extent: Same Story

on Another Scale

entry:

%1 = alloca

%acc = alloca Fixpoint den_exp t e : itree exp_E value

store %n, %1
store 1, $%acc
br label %$start

loop:
%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %$else

body: post:
%$6 = load %acc %$12 = load %acc
%7 = load %1 ret %12

%28 = mul %6, %7

store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI

December 18th, 2019

To Some Extent: Same Story

on Another Scale

entry:

%1 = alloca

%acc = alloca Fixpoint den_exp t e : itree exp_E value

store %n, %1

store 1, $%acc
br label %$start

Definition den _instr i : itree instr_E unit

loop:
23 = load %1
$4 = icmp sgt %3, 0

br %4, label %then, label %else

body: post:
%6 = load %acc %12 = load %acc
$7 = load %1 ret %12

%8 = mul %6, %7
store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI

December 18th, 2019

To Some Extent: Same Story

on Another Scale

entry:

%1 = alloca

%acc = alloca Fixpoint den_exp t e : itree exp_E value

store %n, %1
store 1, $%acc
br label %$start

Definition den _instr i : itree instr_E unit

loop: Definition den_terminator t : itree exp_E (bid + value)
%23 = load %1
%4 = icmp sgt %3, 0

br %4, label %then, label %else

body: post:
%6 = load %acc %12 = load %acc
$7 = load %1 ret %12

%8 = mul %6, %7
store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI

December 18th, 2019

To Some Extent: Same Story

on Another Scale

entry:

%1 = alloca

%acc = alloca Fixpoint den_exp t e : itree exp_E value

store %n, %1
store 1, $%acc
br label %$start

Definition den _instr i : itree instr_E unit

loop: Definition den_terminator t : itree exp_E (bid + value)
%3 = load %1
$4 = icmp sgt %3, 0 . e . . .
br %4, label %then, label %else Definition den_block b : itree instr_E (bid + value)
body: post:
%6 = load %acc $12 = load %acc
%7 = load %1 ret %12

%8 = mul %6, %7
store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI

December 18th, 2019

To Some Extent: Same Story
on Another Scale

entry:

%1 = alloca
%acc = alloca Fixpoint den_exp t e : itree exp_E value
store %n, %1
store 1, $%acc
br label %start

Definition den _instr i : itree instr_E unit

loop: Definition den_terminator t : itree exp_E (bid + value)
%3 = load %1
$4 = icmp sgt %3, 0 . e . . .
sre . Clelberl Sbmem. dlelhell Selse Definition den_block b : itree instr_E (bid + value)
Definition den_cfg f : itree instr_E value
body: post:
%6 = load %acc %12 = load %acc
%7 = load %1 ret %12
%8 = mul %6, %7

store %8, %acc
%9 = load %1
210 = sub %9, 1
store %10, %1
br label %start

Yannick ZAKOWSKI December 18th, 2019

To Some Extent: Same Story
on Another Scale

entry:

%1 = alloca
%acc = alloca Fixpoint den_exp t e : itree exp_E value
store %n, %1
store 1, $%acc
br label %start

Definition den _instr i : itree instr_E unit

loop: Definition den_terminator t : itree exp_E (bid + value)
%3 = load %1
34 = i t %3, 0
br %4fCT§bZ§ sthen, label %else Definition den_block b : itree instr_E (bid + value)
Definition den_cfg f : itree instr_E value
body: post: , _ _
It’s a fixed-point!
%6 = load %acc %12 = load %acc
%7 = load %1 ret %12 . . .
8 = mul %6, %7 den_block: ktree instr_E bid (bid + value)
%9 = load %1 den block := iter X X Y 'Y
$10 = sub %9, 1 — " f :
1 I
store %10, %1 ;
br label %start

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value

> interp_globals
itree E1 (gstate * value)

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value
_ > interp_globals
itree E1 (gstate * value)
interp_locals
itree E2 (Istack * (gstate * value))

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value

interp_globals
itree E1 (gstate * value)

interp_locals
itree E2 (Istack * (gstate * value))

interp_memory

itree E3 (memory * (Istack * (gstate * value)))

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value

interp_globals
itree E1 (gstate * value)

interp_locals
itree E2 (Istack * (gstate * value))

itree E3 (memory * (Istack * (gstate * value))) Interp_memory

model_undff/

itree E4 (memory * (Istack * (gstate * value))) -> Prop

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value

interp_globals
itree E1 (gstate * value)

interp_locals
itree E2 (Istack * (gstate * value))

itree E3 (memory * (Istack * (gstate * value))) Interp_memory

model_undff/

itree E4 (memory * (Istack * (gstate * value))) -> Prop

model UB l

itree E5 (memory * (Istack * (gstate * value))) -> Prop

Yannick ZAKOWSKI December 18th, 2019

A Chain of Interpreters

denote llvm p

itree E_Illvm value

> interp_intrinsics
itree EO value
_ > interp_globals
itree E1 (gstate * value)
interp_locals
itree E2 (Istack * (gstate * value))

itree E3 (memory * (Istack * (gstate * value))) > Interp_memory

model_undff/ \ execute undef

itree E4 (memory * (Istack * (gstate * value))) -> Prop itree E4 (memory * (Istack * (gstate * value)))
model _UB 1 fail UB 1
itree E5 (memory * (Istack * (gstate * value))) -> Prop itree E5 (memory * (Istack * (gstate * value)))

Yannick ZAKOWSKI December 18th, 2019

State of the Project

The full story has more to say, including about:

Treatment of poison and undef;

Mutually recursive definition of functions;
Memory model,

Hierarchy of refinements.

Yannick ZAKOWSKI December 18th, 2019

State of the Project

The full story has more to say, including about:

Treatment of poison and undef;

Mutually recursive definition of functions;
Memory model,

Hierarchy of refinements.

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
IS In progress.

Yannick ZAKOWSKI December 18th, 2019

State of the Project

The full story has more to say, including about:

Treatment of poison and undef;

Mutually recursive definition of functions;
Memory model,

Hierarchy of refinements.

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
IS In progress.

This is still a work in progress, but it can be followed on Github:
https://github.com/vellvm/vellvm

Yannick ZAKOWSKI December 18th, 2019

https://github.com/vellvm/vellvm

State of the Project

The full story has more to say, including about:

Treatment of poison and undef;

Mutually recursive definition of functions;
Memory model,

Hierarchy of refinements.

Currently done: the new semantics is fully defined.

The proof of the meta-theory and its use to prove optimizations
IS In progress.

This is still a work in progress, but it can be followed on Github:
https://github.com/vellvm/vellvm

Already a user: Vadim Zaliva compiles Helix to Vellvm!

Yannick ZAKOWSKI December 18th, 2019

https://github.com/vellvm/vellvm

Conclusion

Interaction trees (POPL’20) offer a library for:

A data-structure to represent recursive, effectful computations;
Expressive combinators to build and compose them;

A family of interpreters of itrees into monads;

A rich equational theory to reason up-to taus about them;
Tutorial to prove a compiler correct using itrees.

Yannick ZAKOWSKI December 18th, 2019

Interaction trees (POPL’20) offer a library for:

A data-structure to represent recursive, effectful computations;
Expressive combinators to build and compose them;

A family of interpreters of itrees into monads;

A rich equational theory to reason up-to taus about them;
Tutorial to prove a compiler correct using itrees.

Generalized Parameterized Coinduction (CPP’20):

Extends the paco library in a backward-compatible way;
Demonstrates how to axiomatize reasoning up-to tau
in @ way sensitive to strong/weak guards.

Yannick ZAKOWSKI December 18th, 2019

Interaction trees (POPL’20) offer a library for:

A data-structure to represent recursive, effectful computations;
Expressive combinators to build and compose them;

A family of interpreters of itrees into monads;

A rich equational theory to reason up-to taus about them;
Tutorial to prove a compiler correct using itrees.

Generalized Parameterized Coinduction (CPP’20):

Extends the paco library in a backward-compatible way;
Demonstrates how to axiomatize reasoning up-to tau
in @ way sensitive to strong/weak guards.

A modular Vellvm using ITrees (in progress):

A new completely denotational semantics;
A chain of interpreters allowing for both a model and an executable;
Notions of refinements inheriting from itree’s equational theory.

Yannick ZAKOWSKI December 18th, 2019

Interaction trees (POPL’20) offer a library for:

A data-structure to represent recursive, effectful computations;
Expressive combinators to build and compose them;

A family of interpreters of itrees into monads;

A rich equational theory to reason up-to taus about them;
Tutorial to prove a compiler correct using itrees.

Generalized Parameterized Coinduction (CPP’20):

Extends the paco library in a backward-compatible way;
Demonstrates how to axiomatize reasoning up-to tau
in @ way sensitive to strong/weak guards.

A modular Vellvm using ITrees (in progress):

A new completely denotational semantics;
A chain of interpreters allowing for both a model and an executable;
Notions of refinements inheriting from itree’s equational theory.

Two early prospects:

Denoting CCS as ITrees;
Dijkstra’s monad for [Trees.

Yannick ZAKOWSKI December 18th, 2019

