
Enforcing C-level security policies
using machine-level tags

Andrew Tolmach
Sean Anderson

Chris Chak
Portland State University

Cătălin Hriţcu, INRIA Paris
Benjamin Pierce, Univ. of Pennsylvania

 DARPA/Draper Labs SSITH/Hope Project

INRIA Seminar 12 April 2019

This	material	is	based	upon	work	supported	by	the	Defense	Advanced	Research	Projects	Agency	(DARPA)	under	Contract	No.	HR0011-18-
C-0011.	Any	opinions,	findings	and	conclusions	or	recommendaJons	expressed	in	this	material	are	those	of	the	author(s)	and	do	not	
necessarily	reflect	the	views	of	the	Defense	Advanced	Research	Projects	Agency	(DARPA).	

HW for better SW security

• Problem space: security for legacy software...
• Especially in unsafe languages like C/C++

• ...using hardware support for reference monitors...
• Processor extensions to handle metadata

• ...with a new focus on higher-level properties
• Expressed in source-language terms

• Extending beyond simple safety

• Trusting or verifying the compiler

 2

Outline

• Reference monitors and the PIPE

• ISA-level Tag-based policies

• C-level policies

• Semantics and implementation

• Conclusions

 3

Reference Monitors
and the PIPE

Reference Monitors
• Explicitly check every potentially dangerous operation

• e.g. “is this memory reference in bounds?” “is this top-secret value
being written to an insecure channel?” “is this a valid address to jump
to?”

• Useful when we don’t trust program and/or programming
language

• Works for any safety property (“this bad thing does not
happen”)

• Doesn’t work for liveness properties (“this good thing does happen”)

• Gives “fail-stop” behavior

• No direct support for recovering and continuing

 5

Examples of safety policies

• “No secret data leak to a public output
channel.”

• “Every store operation occurs to a valid
memory location.”

• “The processor only jumps to places the
programmer intended.”

• “Code modules communicate only via their
specified interfaces.”

 6

Example: confidentiality

• Data comes from secret or public sources
• x = read_secret(); y = read_public();

• Any result of operating on secret data should
also be treated as secret
• z = x + y; // z is secret ⇔ x or y is secret

• Attempting to output secret data to a public
channel should halt the program
• write_public(z); // halt if z is secret

 7

Example: compartments

• Code is divided into
compartments with
explicit interfaces

• Inter-compartment
access is mediated
according to access
control matrix

• Attempting an invalid
access should halt the
program

 8

int foo@A[5]; // compartment A

int bar@A(int i) { // compartment A

return foo[i];

}

int main@B() { //compartment B

return bar(3);

}

Main Foo Bar

A — Read, Write Call

B Call — Call

Figure 3: This access control matrix protects foo from direct access by main, but allows bar as an interface.

cannot update the PC Tag, whereas statements can. All policy hooks may access the PC Tag, so we omit it

as an argument.

1.1.2 Rule Cache

Performing a check involving multiple instructions on the monitor for every one instruction on the main

processor would be ine�cient. Instead, most tag processing is actually done via a rule cache, which acts as

a look-up table mapping instructions, instruction tags, and operand tags to output tags.

E�cient caching requires that the space of possible combinations of instructions and tags be kept small.

Our new compartmentalization policy is useful because it uses fewer tags than a näıve implementation,

resulting in a smaller cache footprint, fewer cache misses, and better performance.

1.2 Compartmentalization

Compartmentalization describes a family of security policies based on the principles of fault isolation [8] and

least privilege [1]. Programs are split into pieces, each of which serves a purpose and possesses the minimum

privileges necessary to accomplish that purpose.

In our model, a program is divided into compartments, each containing one or more functions and

optionally variables or static arrays. Compartments are considered subjects. Functions, variables, and

memory locations – static or dynamic – are all considered objects. The compartmentalization policy is an

access control matrix that determines how a given subject may access an object [6]. Access to functions is

controlled at the compartment granularity. Figure 3 shows a simple program with compartment annotations

(@NAME) and a corresponding access control matrix.

1.3 Capabilities

Compartmentalization can be implemented as an explicit access control matrix, or as capabilities. A capa-

bility is a token that allows any subject that holds it to access the object that it references. A capability

machine forces all subject-object interactions to happen via capability, and prevents capabilities from being

3

int foo@A[5]; // compartment A

int bar@A(int i) { // compartment A

return foo[i];

}

int main@B() { //compartment B

return bar(3);

}

Main Foo Bar

A — Read, Write Call

B Call — Call

Figure 3: This access control matrix protects foo from direct access by main, but allows bar as an interface.

cannot update the PC Tag, whereas statements can. All policy hooks may access the PC Tag, so we omit it

as an argument.

1.1.2 Rule Cache

Performing a check involving multiple instructions on the monitor for every one instruction on the main

processor would be ine�cient. Instead, most tag processing is actually done via a rule cache, which acts as

a look-up table mapping instructions, instruction tags, and operand tags to output tags.

E�cient caching requires that the space of possible combinations of instructions and tags be kept small.

Our new compartmentalization policy is useful because it uses fewer tags than a näıve implementation,

resulting in a smaller cache footprint, fewer cache misses, and better performance.

1.2 Compartmentalization

Compartmentalization describes a family of security policies based on the principles of fault isolation [8] and

least privilege [1]. Programs are split into pieces, each of which serves a purpose and possesses the minimum

privileges necessary to accomplish that purpose.

In our model, a program is divided into compartments, each containing one or more functions and

optionally variables or static arrays. Compartments are considered subjects. Functions, variables, and

memory locations – static or dynamic – are all considered objects. The compartmentalization policy is an

access control matrix that determines how a given subject may access an object [6]. Access to functions is

controlled at the compartment granularity. Figure 3 shows a simple program with compartment annotations

(@NAME) and a corresponding access control matrix.

1.3 Capabilities

Compartmentalization can be implemented as an explicit access control matrix, or as capabilities. A capa-

bility is a token that allows any subject that holds it to access the object that it references. A capability

machine forces all subject-object interactions to happen via capability, and prevents capabilities from being

3

Example: memory safety

• Each pointer is associated with a precise region
of memory

• Attempting to use a pointer to access outside
its region or to access a deallocated region
should halt the program

• In C/C++ this protects against one class of
"Undefined Behaviors" (UB)

• Safe languages normally enforce this in software

 9

Monitoring in Hardware
• Implementing monitors in software can be very slow

• So, let's use silicon to improve security, not just
performance

• Perform monitoring in parallel with normal
execution, to avoid adding delay

• Checks occur at machine level, so cannot be evaded
by buggy or malicious software

• Challenge: how to make hardware flexible enough to
handle changing threats

 10

 11

+1

PC

ALU

Memory

Register File

I−Store

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o

la
tio

n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1Simplified
PIPE
Architecture

Typical RISC CPU

+ large tag on
every word

+tag management
unit (rule cache)

(costs extra ~100% in area and ~50% in power)

Tag Management Unit

 12

(opcode,
pc-tag,

instruction-tag,
register-operand1-tag,
register-operand2-tag,
memory-operand-tag)

key

(new-pc-tag,
result-tag)

 result

acts like a cache

if key is not present, control traps to tag miss handler

Tag Miss Handler
• Ordinary machine code that lives at special location

in OS (or runs on a special co-processor)

• Takes missing key as input

• Executes tagging decision algorithm
• Hardware is completely independent of this algorithm

• EITHER generates result tags & stores in TMU cache
• Instruction that faulted is then restarted

• OR discovers security violation and fail-stops the
process (or whole processor)

 13

PIPE performance

• Runtime cost depends on cache hit rate

• Varies widely for different choices of policies
and program patterns

• Simulations using SPEC2006 benchmarks
enforcing a fairly rich composite policy show
<10% added runtime for most programs

• Keeping number of “live” tags low is essential
• Also important for fault handler to run fast

 14

Tag-based Policies

Anatomy of a policy
• Set of tags for labeling registers, memory, PC

• Can be discrete symbols, numbers, or addresses pointing to
arbitrarily complicated data structures

• Rules for checking and propagating tags as the
machine executes each instruction
• Rules can be arbitrarily complex and may maintain a

persistent internal database

• But they must be monotonic

• Initial configuration

• Tags on memory contents; state of tag rule database

 16Policies are written in a domain-specific language

IFC Policy
• Goal: ensure that secret data does not flow to public

output
• or, dually, ensure that public input data does not taint private data

• Tag = Value from security lattice, e.g.
• attached to each data value

• also attached to PC to record implicit flows

• Rules:
• Computations produce result value tagged with join of argument

value tags and PC tag

• Conditional tests raise PC to join of argument values

• Public values cannot be generated when PC is tagged secret

 17

Secret
|

Public

 18

user code

hardware

software

tag miss handler

CPU TMU

rule cacheregisters

ALU

…
add r1,r2,r3
add r4,r3,r5

…

symbolic rules

add(L1,L2) ! max(L1,L2)
…

add(public,public) !
public

add(secret,secret) !
secret

r1:3@secret
r2:2@secret
r3:9@public
r4:3@public
r5:7@public

r1:3@secret
r2:2@secret
r3:9@public
r4:3@public
r5:7@public

add(public,public) !
public

add(secret,secret) !
secret

r1:3@secret
r2:2@secret
r3:5@secret
r4:3@public
r5:7@public

…
add r1,r2,r3
add r4,r3,r5

…

r1:3@secret
r2:2@secret
r3:5@secret
r4:3@public
r5:7@public

trap

add(public,public) !
public

add(secret,secret) !
secret

add(public,public) !
public

add(secret,secret) !
secret

add(public,secret) !
secret

installrestart

r1:3@secret
r2:2@secret
r3:5@secret
r4:3@public
r5:8@secret

r1:3@secret
r2:2@secret
r3:5@secret
r4:3@public
r5:7@public

IFC example secret > public

Example: Static Compartments

• Goal: Divide process memory into set of disjoint
compartments which are protected from each other
• Code in one compartment can jump or write to other

compartments only at a pre-defined set of addresses (an interface)

• Tags = compartment ID or set of compartment IDs

• PC is tagged with current compartment

• Each memory location is tagged with set of compartments that
can validly access it

• Rules:

• On each write and after each branch, compare PC tag with tag of
memory location being written or executed

 19

Example: Heap Memory Safety
• Goal: prevent heap buffer overflows

• Tags = ValueTag | Cell(region#,ValueTag)  
 where ValueTag = NonPtr | Ptr(region#)

• Each call to malloc generates a fresh integer region# tag c -- a "color"

• Pointer to new region is tagged Ptr(c)

• All other values are tagged NonPtr

• Values in newly-allocated memory cells are tagged with Cell(c,v) where
v is tag of value in cell

• Rules:
• Load and store instructions check that address pointer is tagged Ptr(c)

and the referenced memory cell is tagged Cell(c,_)

• Pointer arithmetic instructions preserve Ptr(c) tags

 20

 21

Memory
Heap Memory Safety Example

 22

int *x = malloc(3)
y = 10
x[0] = y

x
MemoryVariables

y 10

10

Heap Memory Safety Example

 23

int *x = malloc(3)
y = 10
x[0] = y

x
MemoryVariables

y 10

10

int *z = malloc(5)
x[2] = (int) z

z

Heap Memory Safety Example

 24

int *x = malloc(3)
y = 42
x[0] = y

x
MemoryVariables

y 42

42

int *z = malloc(5)
x[2] = (int) z

z

int *v = x[2] + 2
v[0] = y

v

42

Heap Memory Safety Example

 25

int *x = malloc(3)
y = 42
x[0] = y

x
MemoryVariables

y 42

42

int *z = malloc(5)
x[2] = (int) z

z

int *v = (int *) x[2] + 2
v[0] = y

v

42

int *w = x + 3
w[0] = y

w
X

Spatial Safety

 26

int *x = malloc(3)
y = 42
x[0] = y

x
MemoryVariables

y 42

42

int *z = malloc(5)
x[2] = (int) z

z

int *v = (int *) x[2] + 2
v[0] = y

v

42

int *w = x + 3
w[0] = y

w
X

Temporal Safety

free(x)
x[0] = 100 X

Composing policies
• In practice we want to compose policies

• Many policies are essentially orthogonal
• e.g. A = Memory safety and B = IFC

• Make tags be pointers to pairs (Atag,Btag)

• Operations are allowed only if both policies say OK

• But others are not…

• e.g. A = Memory safety and B = Compartments

• because memory tags for these must be coherent

• General theory is a subject of ongoing research

 27

C-Level Policies

Problem and Opportunity

• It is hard to specify and enforce some safety policies
at hardware ISA level
• No typing information

• No structured control flow

• Function boundaries and calling conventions may be obscured

• How about working directly at the level of C code
instead?
• Tie tag-based monitoring to C code execution points

• Avoid reverse engineering of compiled code

• Support specifying policies at higher level of abstraction

 29

Approach

• Use tagging rules during C execution
• Add monitoring/control points to C semantics

• Customize by per-system or per-program rules

• Compile to ISA-level tags for runtime enforcement

• Express high-level policies with rules
• Fine-grained information flow control

• Compartment enforcement and access control

• Combine with fixed base policy
• Trap C undefined behaviors on pointers

 30

Example: IFC in more detail

• Goal: prevent leakage of high-security information

• Tags = Security labels from a lattice
• Initial memory values and pointers are labelled

• PC carries “current” label

• Rules:
• Instructions that move values propagate labels

• Binary operations compute lattice join of labels

• Conditional jumps raise PC label level based on inspected val

• “No sensitive upgrade” — stores are prevented if PC is
higher than old value, thus avoiding “implicit flows”

 31

Secret
|

Public

e.g.

IFC: example program

 32

int f (int x, int y) { // assume x value secret, y value public
 if (x > 0)
 y = 42; // bad: sensitive upgrade
 y = y + 1; // ok: not under control of secret
 return y;
}

Calling f (1,100) should trigger tag violation

x > 0 ?

y:= y+1

y:= 42

return y

FT

Assumes that attacker cannot (efficiently) observe when tag
violations occur (gives "error-insensitive non-interference")

Implicit flow if public return in y depends on secret x

Calling f (0,100) should not trigger tag violation

ISA-level tagging: “label creep”

 33

Calling f (1,100) triggers tag violation ✔
Calling f (0,100) also triggers tag violation ✘

x > 0 ?

y:= y+1

y:= 42

return y

FT

brnz pc_tag arg_tag := OK (pc_tag ∨ arg_tag)
mov pc_tag src_tag tgt_tag :=
 if pc_tag ≤ tgt_tag then OK (pc_tag ∨ src_tag) else FAIL

function f: // args in r0, r1
0 : Mov r0 r2 // fetch arg0
1 : Brnz r2 3 // if arg0 > 0 goto 4
2 : Const 1 r6 // goto 6
3 : Brnz r6 3 //
4 : Const 42 r5 // get 42
5 : Mov r5 r1 // store into arg1
6 : Mov r1 r7 // fetch arg1
7 : Const 1 r8 // add 1
8 : Add r8 r7 // to arg1 value
9 : Mov r7 r1 // store back in arg1
10 : Mov r1 r9 // fetch arg1
11 : Ret r9 // and return it
12 : Halt

C-level tagging
• Express tagging policy at level of C expression

operators and control structures, rather than of
machine instructions

• Attach tags to C “program counter,” values, memory
locations (globals, malloc’ed heap records, …),
functions, …

• Tag rules are invoked at fixed set of control points in
C execution semantics
• instead of at each instruction

• similar to aspect-oriented programming “advice” points

 34

Assumptions

• Access to C source code
• But little or no ability to edit it

• All object code is produced by our custom
compiler
• Compiler is in TCB; we must trust or (better) verify it

• May want to “bake in” some policies
• To guard against some C undefined behaviors

 35

C-level control points

 36

int f (int x, int y) {
 if (x > 0)
 y = 42;
 y = y + 1;
 return y;
}

arg arg enter

ifSplit

add

compare

return

assignifJoin

…and more

Set of control points is defined
once and for all for the C language.

C-level IFC

 37

int f (int x, int y) {
 if (x > 0)
 y = 42;
 y = y + 1;
 return y;
}

ifSplit

assignifJoin

ifSplitT v_tag pc_tag := OK (v_tag ∨ pc_tag)
ifJoinT v_tag old_pc_tag pc_tag := OK old_pc_tag
assignT pc_tag v_tag old_v_tag :=
 if pc_tag ≤ old_v_tag then
 OK (pc_tag ∨ v_tag)
 else FAIL

rules are parameterized
on tags of all relevant

values and PC

PC tag is reset at join point, so second assignment is OK

Example: Compartments sharing data

• Goal: use interfaces to control how one compartment
shares data with another

• Tags as in Memory safety policy, but with  
 Value Tags = NonPtr | Pointer(a,c)  
 where a is an access level = ReadOnly | ReadWrite  
 and PC Tag = Function ID

• Auxiliary configuration data maps defines  
 Compartments = sets of Function ID's 
and says which compartments grant which other
compartments write access

 38

Example program

 39

void f@A (int *p) { *p = 1; }
void g@A () { int *q = malloc(1); f(q); }
void main@B () { int *r = malloc(1); g(); f(r); }

Store in first call to f (from g) should succeed;  
store in second call (from main) should fail.

Assume access control configuration defines 
 A = {f,g}, B ={h,main}
and A has only read access to data allocated by B.

Rules:
• Each array malloc generates a fresh region "color" c and resulting pointer is

tagged Pointer(ReadWrite,c)

• Memory writes require Pointer(ReadWrite,_); reads require only Pointer(_,_)

• On function calls, each pointer argument is potentially "downgraded" from
ReadWrite to ReadOnly based on PC tags of caller, callee

Using fewer colors

• Should we really allocate a separate color for
each malloc'ed buffer?
• + Gives fine-grained control over sharing

• + Prevents one class of C undefined behaviors

• - Puts lots of pressure on the tag cache

• Idea: to control sharing, we only need to
distinguish regions that we actually might share
• according to programmer or (since we trust the

compiler) an escape analysis

 40

Using fewer colors (2)

• Distinguish definitely "private" buffers from
potentially "sharable" buffers

• Each "Sharable" buffer gets a fresh color

• "Private" buffers are all given a single per-
compartment color

• Trade-off: we no longer get as much intra-
component protection against memory UBs

 41

Semantics and
Implementation

Architecture
• To use tagged C for a specific policy:

• define vocabulary of tags and tag operators (just as for
machine-level tagging)

• instantiate rules for each control point

• To use it for a specific C program:
• specify tag information for (at least) link-level C entities

including functions and globals

• ideally we will not need to change the C code

• Policies can be specified per system, per module or
even per function

 43

More detailed example: statements

 44

| IfS e s1 s2 =>
 v@v_tag <- eval e;
 pc_tag_0 <- get_pc_tag;
 pc_tag_1 <- ifSplitT v_tag pc_tag_0;
 set_pc_tag pc_tag_1;
 if v then exec s1 else exec s2;
 pc_tag_2 <- ifJoinT v_tag pc_tag_0 pc_tag_1;
 set_pc_tag pc_tag_2

One clause in C statement semantics

 Tag = PUBLIC | SECRET

 ifSplitT v_tag pc_tag := OK (v_tag \/ pc_tag)
 ifJoinT v_tag old_pc_tag pc_tag := OK old_pc_tag

An instantiation for IFC tags:

this is
designed once

and for all

this is
written once

for each policy
(in policy DSL)

More detailed example: expressions

 45

| PlusE e1 e2 =>
 v1@t1 <- eval e1;
 v2@t2 <- eval e2;
 t <- plusT t1 t2;
 ret (v1+v2)@t

One clause in C expression semantics

 Tag = PUBLIC | SECRET

 plusT v1_tag v2_tag := OK(v1_tag \/ v2_tag)

An instantiation for IFC tags:

this is
designed once

and for all

these are
written once

for each policy Tag = NotPtr | Ptr region

 plusT v1_tag v2_tag :=
 match v1_tag,v2_tag with
 | NotPtr, NotPtr => OK NotPtr
 | Ptr a, NotPtr => OK (Ptr a)
 | NotPtr, Ptr a => OK (Ptr a)
 | _, _ => FAIL
 end.

An instantiation for memory safety tags:

Compilation

• Go from tagged C to tagged machine code

• Basic idea: specially tag the instructions in the
generated code to indicate their C-level role
• Machine-level rules for these special tags are built

directly from the C-level rules

• Must modify compiler (to generate appropriately
tagged instructions)

• Compilation scheme is independent of policy (although
policy-specific schemes might give better code)

 46

Compilation Example

 47

compileExp (e: Exp) : (reg * list Inst) =
…
| PlusE e1 e2 =>
 let (r1,code1) := compileExp e1 in
 let (r2,code2) := compileExp e2 in
 let r := fresh_reg() in
 (r, code1 ++
 code2 ++
 [MovI @ Icopy r1 r] ++ MovI,tpc,Icopy,t1,_,_,_ -> tpc,t1,_
 [AddI @ Iplus r2 r]) AddI,tpc,Iplus,t1,t2,_,_-> tpc,plusT t1 t2,_

Corresponding clause in C expression compiler

| PlusE e1 e2 =>
 v1@t1 <- eval e1;
 v2@t2 <- eval e2;
 t <- plusT t1 t2;
 ret (v1+v2)@t

One clause in C expression semantics

Machine-level rules (defined once and for all)

| IfS e s1 s2 =>
 let (r,is) := compileExp e in
 let rt := fresh_reg() in
 let rt' := fresh_reg() in
 let is1 := compileStm s1 in
 let is2 := compileStm s2 in
 is ++
 getpctag rt ++
 combine r rt IifSplitT rt’ ++
 setpctag rt’ ++
 [BrnzI r (length is2+1) @ X] ++
 is2 ++
 [BrI (length is1) @ X] ++
 is1 ++
 combine rt rt’ IifJoinT rt ++
 setpctag rt

getpctag r := [ConstI @ Igetpctag 0 r]
setpctag r := [ConstI @ Isetpctag 0 r]
combine r1 r2 I r3 := [MovI @ Icopy r1 r3] ++
 [MovI @ I r2 r3]

ConstI,tpc,Igetpctag,_,_,_,_ -> tpc,tpc,_
ConstI,_,Isetpctag,new_tpc,_,_,_ -> new_tpc,new_tpc,_
MovI,tpc,Icopy,t1,_,_,_ -> tpc,t1,_
MovI,tpc_,IifsplitT,t1,t2,_ -> tpc,ifSplitT tpc t1 t2
MovI,tpc,IifjointT,t1,t2,_ -> tpc,ifJoinT tpc t1 t2

Machine-level rules (defined once and for all)

where

saved tags are attached to dummy values 
 (spilling if necessary just as for real values)

Compiler Verification
• Compiler is now part of TCB, so ideally it

should be verified

• First experiment (work in progress): verify
semantic preservation for a tagged analog to
the RTLGen phase of CompCert

• Longer-term goal: integrate with rest of
CompCert pipeline, targeting RISC-V

 49

C-like exprs/stmts 
with tags

Instruction-level CFG
with tags

tag-preserving
compiler

Conclusions

Summary

• Expressing tag policies at C level extends the
range of properties that we can enforce using
the PIPE

• These extensions rely heavily on having higher-
level semantic "hooks"

• We have a plausible compilation scheme

• But, the compiler must be trusted or verified

 51

Status

• Have proof-of-concept compiler for toy
versions of source language, machine, and
policies
• Source: while, if, functions, global arrays, local variables,

malloc

• Target: infinite register machine with argument
marshaling primitives

• Policies: IFC, compartments, memory safety

• Verification of semantic preservation is in progress

 52

Ongoing work

• Continuing to extend toy source language with
more features of full C
• types and casts, addressable locals, function ptrs, …

• non-structured control flow?

• Designing, implementing, and validating
compartmentalization policies

• Verification experiments with toy compiler

 53

Some Open Questions
• How much can/should we modify C code?

• e.g. tags on parameters, local variables?

• who will be the “security engineer” applying policies?

• How should we handle C undefined behaviors?
• Any properties enforced by C-level policies hold only if the C

code does not trigger undefined behavior (UB)

• We can detect some memory-based UBs using tag policies

• Should we "bake in" these policies?

• What about alternatives to C?
• lower-level, e.g. LLVM-based

• higher-level, e.g. safe structured languages 54

