Toward Efficient Gradual Typing

Jeremy G. Siek,
Andre Kuhlenschmidt,
Deyaaeldeen Almahallawi

Indiana University, Bloomington
Visiting Université Paris Diderot, IRIF

INRIA Gallium
21 February 2019

Toward Efficient Gradual Typing

v

Criteria for Gradually Typed Languages

v

Efficiency Problems, Solutions in Theory

v

Implementations & the Grift Compiler

Performance Evaluation

v

Three Languages

static

untyped <— gradual

A GTLC
el r elrr
Fl‘fg@i T

T := "|B| T—T

)\—>

el r

kye: T

B|T-T

Gradual typing includes dynamic typing

An untyped program:
let
f=XM.1+4y
h=MXg.g3
in
hf
&

Gradual typing includes dynamic typing

A buggy untyped program:

let
f=X.1+y
h = \g.g true

in
hf

%

blame /,

Just like dynamic typing, the error is caught at run time.

Gradual typing includes dynamic typing

Let |- | be an embedding of the A-calculus into the GTLC that
casts every value to the unknown type.

Theorem (Embedding of A-calculus)
Suppose that e is a term of the \-calculus.
» Obo |e] :?

»ellr <= le] | |7]

Gradual typing includes static typing

A typed program:

let

f=MXpint.1+y

h = Ag:int—int.g 3
in

hf

—
4

Gradual typing includes static typing

An ill-typed program:

let

f=MXpint.1+y

h = Ag:int—int.g true
in

hf

Just like static typing, the error is caught at compile time.

Gradual typing includes static typing

Definition (Static)

A type is static if it does not contain 7.
A term is static if its type annotations do not contain 7.

Theorem (Equivalence to A™ on static terms)

Suppose e is a static term and T is a static type.
» Dy e: T <= Okse: T
»ell r <= elsr

Gradual typing enables migration

let
f=MT.1+y
P(T,, T, = h=MXgT,.g3
in
hf

P(int, int—int)
T

P(?,int—int) P(int,?) P(bool,?) P(7,int—bool)

\'%

P(?,7)

The Precision Relation

Precision on Types

T,.cT T,CT
T, T, C T'—T

?C T intC int

Precision on Terms
TCT e Ce, e,Ce, € L€
AT e, © T e, (e, €)C (e, €)

AKA naive subtyping, less-informative, and materialization.
Some authors put 7 on top instead of bottom.

Gradual Guarantee, Part 1

Decreasing precision preserves type checking.

Theorem (Static Gradual Guarantee)
Ifd CeandObre: T, thenO by e : T'and T' T T.

Gradual Guarantee, Part 2

Decreasing precision preserves program behavior.

Increasing precision either preserves behavior or
causes a runtime type error.

Theorem (Dynamic Gradual Guarantee)
Supposee Ceand)t e: T.

» Ifellr v thene |y v and v C .

» Ife |}, U, then either e s vand v/ C vore |, blame (.

Gradual typing protects type invariants

A buggy, partially typed program:

let
f=MX:int.1+4y
h = \g.g true
in
hf
.
blame /,

The error is caught at runtime when the value is cast to an
inconsistent type.

Soundness: gradual typing protects types

The result of an expression agrees with its type.

Let ' - p be well-typed environments.

Theorem (Type Soundness)
IfT ke T,TFpandptelr v, thenT by v T.

Toward Efficient Gradual Typing

v

Criteria for Gradually Typed Languages

v

Efficiency Problems, Solutions in Theory

v

Implementations & the Grift Compiler

Performance Evaluation

v

Space & Time Overhead of Higher-Order Casts

let rec even(n:int) : 7 =
if n = o then true
else odd(n — 1)

let rec odd(n:int) : bool =
if n = o then false
else even(n — 1)

Space-Efficient Gradual Typing. Herman, Tomb, Flanagan. TFP 2006.

Space & Time Overhead of Higher-Order Casts

letrec even(n:int) : 7 =
if » = o then (true : bool = 7)
else (odd(n — 1) : bool = 7)

let rec odd(n:int) : bool =
if n = o then false
else (even(n — 1) : 7 = bool)

Space & Time Overhead of Higher-Order Casts

even(s)

—> odd(4) : bool = 7

— even(3) : 7 = bool = 7

— odd(2) : bool = 7 = bool = 7

— even(1) : 7 = bool = 7 = bool = 7

— odd(o) : bool = 7 = bool = 7 = bool = 7

A Solution in Theory: Coercion Calculus

ground types G,H == int|bool|? —7
coercions c,d = id|G |G |c—d|c;d| L
¢c;id — ¢
id;c —>c
G G?* — id
G, H? — 1* G+#H
(c=d); ((—=d') — (d;¢) — (d;d)
id - id — id
15c— 1°

o Lt—s 1! if c £ G2

Dynamic Typing. Henglein. ESOP 1992
Space-Efficient Gradual Typing. Herman, Tomb, Flanagan. TFP 2006.

Closer to practice: the compose algorithm

s,ta=4d | (G?°;4) | i
in=(g;G |g| L
ghu=1d| (s =)

idgid = id
(s—=t)s5(=)= (3s) = (t3?)
idst=1¢

(g;G)sid=g; G

(G?51)5t=G?;(i32)

g3(h; Gl =(g3h); G
(g:G)5(G?5i) =g3i

(g;G) g (H?" ;i) = L* ifG+G
1lss=1°
g3 Lf=1"

Blame and coercion . . . Siek, Thiemann, Wadler. PLDI 2015.

Compose Adjacent Coercions

en=---]ec) Terms
wi=n|T.e Uncoerced Values
vi=u|u(c—d) | u(g; G!) Values

(u{c—d)) v — (u v{c))(d)
u(id) —
u(1* — blame/
e(c)(d)— e{c3d)

Ql_icksort with and without coercions

quicksort
2500

2000 - !

1500 .

1000 . 7

Runtime in seconds

500 .

20000 T T T =
18000 [~ " 7
16000 [~ Ll 7
14000 .. 7

12000 [~
10000 [~ .= 7

8000 -
6000 [~ " 7

Longest proxy chain

4000 [= 4
2000 - = 8

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Array length

/
23/ 40

Toward Efficient Gradual Typing

v

Criteria for Gradually Typed Languages

v

Efficiency Problems, Solutions in Theory

v

Implementations & the Grift Compiler

Performance Evaluation

v

Tensions in the Design Space

Efficient Sound

\/

Gradual Guarantee

Approach ‘Sound Efficient Gradual Guarantee

Erase types - - L
Insert casts J - L
Limit interop. () o -

Implementation Landscape

System

Sound Gradual Guarantee

O(1) Overhead

Gradualtalk
Reticulated (G)
Nom
Grift

TypeScript
Reticulated (T)
Safe TypeScript

Typed Racket

o020 0000

000000

ON N N I N NONO

Research Questions

» What is the speed of coercions wrt. regular casts?

» What is the overhead for gradual typing on:
(1) statically typed code,
(2) dynamically typed code, and
(3) partially typed code?

The theory says O(1), but what is the constant factor?

The Grift Compiler

» An ahead-of-time compiler. 23k LOC written in Racket.

» The source language GTLC+ includes first-class
functions, mutable arrays, recursive types, tuples,
integers, and floats.

» Compiles the GTLC+ to C.

» Implements coercions and compose (a C function).

» Values are 64 bits. Values of type ? are tagged.

» Specialize casts if neither source nor target is 7.

» Some optimization of function closures (e.g. direct calls).

» No global optimizations, no type inference or
specialization.

» Boehm garbage collector.

Value Representation
61-bit integer stored in 64 bits
double precision floating pointer number
o or 1 stored in 64 bits

A 64-bit pointer to either
(1) a flat closure (function pointer and free variables), or
(2) a proxy closure, which contains three pointers to:
wrapper code, flat closure, and a coercion.

A 64-bit pointer (with 1-bit tag) to either
(1) the data,

(2) a proxy, with pointers to the data and a coercion.

A 64-bit value with 3-bits for a type tag.
Payload is stored in-line for types that can fit.
For others, payload is a pointer to a pair with the full
type and a pointer to the value.

Coercion Representation

2 X 64 bits for pointer to type T and blame label.

64 bits for pointer to type.
(n + 2) X 64 bits for secondary tag (w1th

arlty) n parameter COCI'CIOI’IS and return coercion.

3 X 64 bits for tag and 2 coercions.
2 X 64 bits 2 coercions.

64 bits for blame label.

» Coercions are heap allocated objects, some during
initialization and some at runtime.

» Types are heap allocated during program initialization)
and we apply hash consing.

The Compose Procedure

crcn compose(cren fst, crcn snd) {
if (fst == ID) { return snd; }
else if (snd == ID) { return fst; }
else if (TAG(fst) == SEQUENCE_TAG) {
sequence sl = UNTAG_SEQ(fst);
if (TAG(s1->fst) == PROJECT_TAG) {
return MK_SEQ(s1->fst, compose(sl->snd, snd)); }
else if (TAG(snd) == FAIL_TAG) { return snd; }
else { sequence s2 = UNTAG_SEQ(snd);
type src = UNTAG_INJ(s1->snd)->type;
type tgt = UNTAG_PRJ(s2->fst)->type;
blame 1bl = UNTAG_PRJ(s2->fst)->1bl;
cren ¢ = mk_cren(src, tgt, 1bl);
return compose(compose(seq->fst, c), s2->snd); }
} else if (TAG(snd) == SEQUENCE_TAG) {
if (TAG(fst) == FAIL) { return fst; }
else { crcn ¢ = compose(fst, s2->fst);
return MK_SEQ(c, UNTAG_SEQ(seq)->snd); }
} else if (TAG(snd) == FAIL) {
return TAG(fst) == FAIL ? fst : snd; }
} else if (TAG(fst) == HAS_2ND_TAG) {
snd_tag tag = UNTAG_2ND(fst)->second_tag;
if (tag == FUN_COERCION_TAG) {
return compose_fun(fst, snd);
} else if (tag == REF_COERCION_TAG) {
ref_crcn r1 = UNTAG_REF(fst);
ref_crcn r2 = UNTAG_REF(snd);
if (read == ID && write == ID) return ID;
else { crcn cl = compose(ril->read, r2->read);
crcn c2 = compose(r2->write, ri->write);
return MK_REF_COERCION(c1, c2); } }
} else { raise_blame(UNTAG_FAIL(fst)->1bl); }
s

31/ 40

Toward Efficient Gradual Typing

v

Criteria for Gradually Typed Languages

v

Efficiency Problems, Solutions in Theory

v

Implementations & the Grift Compiler

Performance Evaluation

v

Situating Grift among Typed Languages

10 ¢ -
F Grift 1 7

& Typed-Racket EZZEE

6 OCaml 3

9]

=)

©

)

o 1r E

o

-

9]

(]

[o R

0

9]

—

=

x

; 0.1 E —

o E

5 [

Bel

]

]

aQ

(%]

0.01

33/ 40

Situating Grift among Untyped Languages

10 ¢]
C Grift C— -
Gambit i

Speedup with respect to Racket
=
T

Chez Scheme]

0.1

Partially-typed Sieve w/ & w/o coercions

Runtime casts count Runtime in seconds

Longest proxy chain

12

4

2

sieve

> Coercions A
o | Type-Based Casts H
o] Static Grift - - -
Dynamic Grift

]
4x108
3.5x108 |-
3x108
2.5x108
2x108 -
1.5x108 -~
1x108
5x107 -

@O @R

o
16000
14000 -~
12000
10000 —
8000 [~
6000 |-
4000

2000 —

o

0%

25% 50% 75%
How much of the code is typed

35/ 40

Partially-typed N-Body w/ & w/o coercions

n-body

Coercions
Type-Based Casts
Static Grift -
Dynamic Grift

Runtime in seconds

Runtime casts count

D AWITDCM0 O @ O O

@D QOO @DOINOIe O O O 00

[eleasay

Longest proxy chain

@O0

@ o OO QOS]

O R NWAUON® OO
g T

e &

25% 50% 75% 100%

o
8

How much of the code is typed 36/ 40

Partially-typed Blackscholes w/&w/o coercions

blackscholes

0.45 :
0.4 Coercions A
0 Type-Based Casts
2 Static Grift -
S Dynamic Grift
&
£
o
£
=
5
&
=
5
3
S
"
b
©
8
@
E
=
5
&
£
s
2
S
£
2
o 1
W
4
=
2
S
3
o A a I
0% 25% 50% 75% 100%

How much of the code is typed 37/ 40

Partially-typed FFT w/ & w/o coercions

fft

0.18

0.16 Coercions
0 A Type-Based Casts
2 o4 Static Grift -
g Dynamic Grift
£
o
£
=
5
&
=
5
3
S
"
b
8
@
E
=
5
&
c
‘®
2
S
£
2
o 1
W
4
=
2
S
3

o
0% 25% 50% 75% 100%

How much of the code is typed 38/ 40

Comparison to Typed Racket

matmult
IS
sieve
IS

1 2 20 12 368.81
32 4
2
S
= S
g 16 4 3
s 2
1 1
12 168.17 1 2 20

n-body
o
[
-
J
fft
~

1 2 4831 1 2 20

Coercions
Type-Based Casts

Typed Racket

X-axis: slowdown wrt. Racket, Y-axis: number of configurations

/
39/ 40

Conclusion

» What is the speed with coercions wrt. regular casts?
Much better on programs with proxy-chains.
Similar on programs without proxy-chains.

» What is the overhead for Grift on:
(1) statically typed code: up to 20% (matmult)
(2) dynamically typed code: up to sx (ray), often < 2%
(3) partially typed code: up to 20x (ray), often < 2x

» Next steps:
- Improve representation of coercions.
- Reduce overhead in static code via monotonic pointers.
- Optimizations such as type inference and inlining.

Draft of our PLDI 2019 paper:
https://www.dropbox.com/s/eors60h9t15uvih/
grift-submission-nov-2019.pdf7d1l=1

https://www.dropbox.com/s/eors60h9t15uv1h/grift-submission-nov-2019.pdf?dl=1
https://www.dropbox.com/s/eors60h9t15uv1h/grift-submission-nov-2019.pdf?dl=1

