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Gradual typing includes dynamic typing

An untyped program:
let
f=XM.1+4y
h=MXg.g3
in
hf
&



Gradual typing includes dynamic typing

A buggy untyped program:

let
f=X.1+y
h = \g.g true

in
hf

%

blame /,

Just like dynamic typing, the error is caught at run time.



Gradual typing includes dynamic typing

Let |- | be an embedding of the A-calculus into the GTLC that
casts every value to the unknown type.

Theorem (Embedding of A-calculus)
Suppose that e is a term of the \-calculus.
» Obo |e] :?

»ellr <= le] | |7]



Gradual typing includes static typing

A typed program:

let

f=MXpint.1+y

h = Ag:int—int.g 3
in

hf

—
4



Gradual typing includes static typing

An ill-typed program:

let

f=MXpint.1+y

h = Ag:int—int.g true
in

hf

Just like static typing, the error is caught at compile time.



Gradual typing includes static typing

Definition (Static)

A type is static if it does not contain 7.
A term is static if its type annotations do not contain 7.

Theorem (Equivalence to A™ on static terms)

Suppose e is a static term and T is a static type.
» Dy e: T <= Okse: T
»ell r <= elsr



Gradual typing enables migration

let
f=MT.1+y
P(T,, T, = h=MXgT,.g3
in
hf

P(int, int—int)
T

P(?,int—int)  P(int,?) P(bool,?) P(7,int—bool)

\'%

P(?,7)



The Precision Relation

Precision on Types

T,.cT T,CT
T, T, C T'—T

?C T intC int

Precision on Terms
TCT e Ce, e,Ce, € L€
AT e, © T e, (e, €)C (e, €)

AKA naive subtyping, less-informative, and materialization.
Some authors put 7 on top instead of bottom.



Gradual Guarantee, Part 1

Decreasing precision preserves type checking.

Theorem (Static Gradual Guarantee)
Ifd CeandObre: T, thenO by e : T'and T' T T.



Gradual Guarantee, Part 2

Decreasing precision preserves program behavior.

Increasing precision either preserves behavior or
causes a runtime type error.

Theorem (Dynamic Gradual Guarantee)
Supposee Ceand )t e: T.

» Ifellr v thene |y v and v C .

» Ife |}, U, then either e s vand v/ C vore |, blame (.



Gradual typing protects type invariants

A buggy, partially typed program:

let
f=MX:int.1+4y
h = \g.g true
in
hf
.
blame /,

The error is caught at runtime when the value is cast to an
inconsistent type.



Soundness: gradual typing protects types

The result of an expression agrees with its type.

Let ' - p be well-typed environments.

Theorem (Type Soundness)
IfT ke T,TFpandptelr v, thenT by v T.
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Space & Time Overhead of Higher-Order Casts

let rec even(n:int) : 7 =
if n = o then true
else odd(n — 1)

let rec odd(n:int) : bool =
if n = o then false
else even(n — 1)

Space-Efficient Gradual Typing. Herman, Tomb, Flanagan. TFP 2006.



Space & Time Overhead of Higher-Order Casts

letrec even(n:int) : 7 =
if » = o then (true : bool = 7)
else (odd(n — 1) : bool = 7)

let rec odd(n:int) : bool =
if n = o then false
else (even(n — 1) : 7 = bool)



Space & Time Overhead of Higher-Order Casts

even(s)

—> odd(4) : bool = 7

— even(3) : 7 = bool = 7

— odd(2) : bool = 7 = bool = 7

— even(1) : 7 = bool = 7 = bool = 7

— odd(o) : bool = 7 = bool = 7 = bool = 7



A Solution in Theory: Coercion Calculus

ground types G,H == int|bool|? —7
coercions c,d = id|G |G |c—d|c;d| L
¢c;id — ¢
id;c —>c
G G?* — id
G, H? — 1* G+#H
(c=d); ((—=d') — (d;¢) — (d;d)
id - id — id
15c— 1°

o Lt—s 1! if c £ G2

Dynamic Typing. Henglein. ESOP 1992
Space-Efficient Gradual Typing. Herman, Tomb, Flanagan. TFP 2006.



Closer to practice: the compose algorithm

s,ta=4d | (G?°;4) | i
in=(g;G |g| L
ghu=1d| (s =)

idgid = id
(s—=t)s5( =)= (3s) = (t3?)
idst=1¢

(g;G)sid=g; G

(G?51)5t=G?;(i32)

g3(h; Gl =(g3h); G
(g:G)5(G?5i) =g3i

(g;G) g (H?" ;i) = L* ifG+G
1lss=1°
g3 Lf=1"

Blame and coercion . . . Siek, Thiemann, Wadler. PLDI 2015.



Compose Adjacent Coercions

en=---]ec) Terms
wi=n|T.e Uncoerced Values
vi=u|u(c—d) | u(g; G!) Values

(u{c—d)) v — (u v{c))(d)
u(id) —
u(1* — blame/
e(c)(d)— e{c3d)



Ql_icksort with and without coercions
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Tensions in the Design Space

Efficient Sound
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Limit interop. () o -



Implementation Landscape
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Research Questions

» What is the speed of coercions wrt. regular casts?

» What is the overhead for gradual typing on:
(1) statically typed code,
(2) dynamically typed code, and
(3) partially typed code?

The theory says O(1), but what is the constant factor?



The Grift Compiler

» An ahead-of-time compiler. 23k LOC written in Racket.

» The source language GTLC+ includes first-class
functions, mutable arrays, recursive types, tuples,
integers, and floats.

» Compiles the GTLC+ to C.

» Implements coercions and compose (a C function).

» Values are 64 bits. Values of type ? are tagged.

» Specialize casts if neither source nor target is 7.

» Some optimization of function closures (e.g. direct calls).

» No global optimizations, no type inference or
specialization.

» Boehm garbage collector.



Value Representation
61-bit integer stored in 64 bits
double precision floating pointer number
o or 1 stored in 64 bits

A 64-bit pointer to either
(1) a flat closure (function pointer and free variables), or
(2) a proxy closure, which contains three pointers to:
wrapper code, flat closure, and a coercion.

A 64-bit pointer (with 1-bit tag) to either
(1) the data,

(2) a proxy, with pointers to the data and a coercion.

A 64-bit value with 3-bits for a type tag.
Payload is stored in-line for types that can fit.
For others, payload is a pointer to a pair with the full
type and a pointer to the value.



Coercion Representation

2 X 64 bits for pointer to type T and blame label.

64 bits for pointer to type.
(n + 2) X 64 bits for secondary tag (w1th

arlty) n parameter COCI'CIOI’IS and return coercion.

3 X 64 bits for tag and 2 coercions.
2 X 64 bits 2 coercions.

64 bits for blame label.

» Coercions are heap allocated objects, some during
initialization and some at runtime.

» Types are heap allocated during program initialization)
and we apply hash consing.



The Compose Procedure

crcn compose(cren fst, crcn snd) {
if (fst == ID) { return snd; }
else if (snd == ID) { return fst; }
else if (TAG(fst) == SEQUENCE_TAG) {
sequence sl = UNTAG_SEQ(fst);
if (TAG(s1->fst) == PROJECT_TAG) {
return MK_SEQ(s1->fst, compose(sl->snd, snd)); }
else if (TAG(snd) == FAIL_TAG) { return snd; }
else { sequence s2 = UNTAG_SEQ(snd);
type src = UNTAG_INJ(s1->snd)->type;
type tgt = UNTAG_PRJ(s2->fst)->type;
blame 1bl = UNTAG_PRJ(s2->fst)->1bl;
cren ¢ = mk_cren(src, tgt, 1bl);
return compose(compose(seq->fst, c), s2->snd); }
} else if (TAG(snd) == SEQUENCE_TAG) {
if (TAG(fst) == FAIL) { return fst; }
else { crcn ¢ = compose(fst, s2->fst);
return MK_SEQ(c, UNTAG_SEQ(seq)->snd); }
} else if (TAG(snd) == FAIL) {
return TAG(fst) == FAIL ? fst : snd; }
} else if (TAG(fst) == HAS_2ND_TAG) {
snd_tag tag = UNTAG_2ND(fst)->second_tag;
if (tag == FUN_COERCION_TAG) {
return compose_fun(fst, snd);
} else if (tag == REF_COERCION_TAG) {
ref_crcn r1 = UNTAG_REF(fst);
ref_crcn r2 = UNTAG_REF(snd);
if (read == ID && write == ID) return ID;
else { crcn cl = compose(ril->read, r2->read);
crcn c2 = compose(r2->write, ri->write);
return MK_REF_COERCION(c1, c2); } }
} else { raise_blame(UNTAG_FAIL(fst)->1bl); }
s
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Situating Grift among Typed Languages
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Situating Grift among Untyped Languages
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Partially-typed Sieve w/ & w/o coercions
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Partially-typed N-Body w/ & w/o coercions
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Partially-typed Blackscholes w/&w/o coercions

blackscholes
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Partially-typed FFT w/ & w/o coercions
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Comparison to Typed Racket
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Conclusion

» What is the speed with coercions wrt. regular casts?
Much better on programs with proxy-chains.
Similar on programs without proxy-chains.

» What is the overhead for Grift on:
(1) statically typed code: up to 20% (matmult)
(2) dynamically typed code: up to sx (ray), often < 2%
(3) partially typed code: up to 20x (ray), often < 2x

» Next steps:
- Improve representation of coercions.
- Reduce overhead in static code via monotonic pointers.
- Optimizations such as type inference and inlining.

Draft of our PLDI 2019 paper:
https://www.dropbox.com/s/eors60h9t15uvih/
grift-submission-nov-2019.pdf7d1l=1


https://www.dropbox.com/s/eors60h9t15uv1h/grift-submission-nov-2019.pdf?dl=1
https://www.dropbox.com/s/eors60h9t15uv1h/grift-submission-nov-2019.pdf?dl=1

