
1

MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic

Robbert Krebbers1 Jacques-Henri Jourdan2 Ralf Jung3 Joseph Tassarotti4

Jan-Oliver Kaiser3 Amin Timany5 Arthur Charguéraud6 Derek Dreyer3

1Delft University of Technology, The Netherlands
2LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France

3MPI-SWS, Germany
4Carnegie Mellon University, USA

5imec-Distrinet, KU Leuven, Belgium
6Inria & Université de Strasbourg, CNRS, ICube, France

September 10, 2018 @ Inria, Paris, France

2

Proofs in separation logic

You have a new separation logic, what do you do?

1. Prove that the logic is sound

in Coq

2. Use it to reason about programs

using Iris Proof Mode

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ∗

Delft University of Technology,
The Netherlands

mail@robbertkrebbers.nl

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00.
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that

2

Proofs in separation logic

You have a new separation logic, what do you do?

1. Prove that the logic is sound in Coq

2. Use it to reason about programs

using Iris Proof Mode

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ∗

Delft University of Technology,
The Netherlands

mail@robbertkrebbers.nl

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00.
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that

2

Proofs in separation logic

You have a new separation logic, what do you do?

1. Prove that the logic is sound in Coq

2. Use it to reason about programs using Iris Proof Mode

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ∗

Delft University of Technology,
The Netherlands

mail@robbertkrebbers.nl

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00.
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
P ∗ (∃ a : A , Φ a ∨ Ψ a) −∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
P ∗ (∃ a : A , Φ a ∨ Ψ a) −∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

2 subgoals

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/2)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

(2/2)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

-

2 subgoals

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/2)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

(2/2)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

-

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x ∨ P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x ∨ P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

2 subgoals

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

(2/2)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+

2 subgoals

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

(2/2)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

This subproof is complete , but there are some unfocused goals :

(1/2)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

(2/2)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+

This subproof is complete , but there are some unfocused goals :

(1/2)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

(2/2)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

-

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

-

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x ∨ P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x ∨ P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

iSplitL "HP"; iAssumption.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

iSplitL "HP"; iAssumption.

No more subgoals .

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

iSplitL "HP"; iAssumption.

Qed.

No more subgoals .

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iSplitL "HP".

+ iAssumption.

+ iAssumption.

- iExists x.

iRight.

iSplitL "HP"; iAssumption.

Qed.

example 1 is defined

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

Unset Printing Notations.

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ

(1/1)
"HP" : P

"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a ∨ P ∗ Ψ a

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

3

Iris Proof Mode (IPM) demo

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]".

Unset Printing Notations.

1 subgoal

A : Type

P : ofe car (uPredC (iResUR Σ))
Φ, Ψ : forall : A , ofe car (uPredC (iResUR Σ))

(1/1)
@envs entails (uPredI (iResUR Σ))

(@Envs (uPredI (iResUR Σ)) (@Enil (bi car (uPredI (iResUR Σ))))
(@Esnoc (bi car (uPredI (iResUR Σ)))

(@Esnoc (bi car (uPredI (iResUR Σ))) (@Enil (bi car (uPredI
(iResUR Σ))))
(INamed

(String (Ascii .Ascii false false false true false false

true false)
(String

(Ascii .Ascii false false false false true false true

false)
EmptyString))) P)

(INamed
(String (Ascii .Ascii false false false true false false

true false)
EmptyString))

(@bi exist (uPredI (iResUR Σ)) A

(fun a : A => @bi or (uPredI (iResUR Σ)) (Φ a) (Ψ a))))
(xI xH))

(@bi exist (uPredI (iResUR Σ)) A

(fun a : A =>
@bi or (uPredI (iResUR Σ)) (@bi sep (uPredI (iResUR Σ)) P (Φ

a))
(@bi sep (uPredI (iResUR Σ)) P (Ψ a))))

Logical notations overridden in scope for separation logic

Notation for deeply embedded context

4

The good things of Iris Proof Mode

I Proofs have the look and feel of Coq proofs
For many Coq tactics tac, it has a variant iTac

I Support for all features of Iris
Higher-order quantification, invariants, ghost state, later . modality, . . .

I Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

I It scales to non-trivial projects
I Safety of Rust and its standard libraries [Jung et. al., POPL’18]
I Encapsulation of the ST monad [Timany et. al., POPL’18]
I A calculus for program refinements [Frumin et. al., LICS’18]
I Verification of object capability patterns [Swasey et. al., OOPSLA’17]
I Soundness of a logic for weak memory [Kaiser et. al., ECOOP’17]

4

The good things of Iris Proof Mode

I Proofs have the look and feel of Coq proofs
For many Coq tactics tac, it has a variant iTac

I Support for all features of Iris
Higher-order quantification, invariants, ghost state, later . modality, . . .

I Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

I It scales to non-trivial projects
I Safety of Rust and its standard libraries [Jung et. al., POPL’18]
I Encapsulation of the ST monad [Timany et. al., POPL’18]
I A calculus for program refinements [Frumin et. al., LICS’18]
I Verification of object capability patterns [Swasey et. al., OOPSLA’17]
I Soundness of a logic for weak memory [Kaiser et. al., ECOOP’17]

4

The good things of Iris Proof Mode

I Proofs have the look and feel of Coq proofs
For many Coq tactics tac, it has a variant iTac

I Support for all features of Iris
Higher-order quantification, invariants, ghost state, later . modality, . . .

I Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

I It scales to non-trivial projects
I Safety of Rust and its standard libraries [Jung et. al., POPL’18]
I Encapsulation of the ST monad [Timany et. al., POPL’18]
I A calculus for program refinements [Frumin et. al., LICS’18]
I Verification of object capability patterns [Swasey et. al., OOPSLA’17]
I Soundness of a logic for weak memory [Kaiser et. al., ECOOP’17]

4

The good things of Iris Proof Mode

I Proofs have the look and feel of Coq proofs
For many Coq tactics tac, it has a variant iTac

I Support for all features of Iris
Higher-order quantification, invariants, ghost state, later . modality, . . .

I Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

I It scales to non-trivial projects
I Safety of Rust and its standard libraries [Jung et. al., POPL’18]
I Encapsulation of the ST monad [Timany et. al., POPL’18]
I A calculus for program refinements [Frumin et. al., LICS’18]
I Verification of object capability patterns [Swasey et. al., OOPSLA’17]
I Soundness of a logic for weak memory [Kaiser et. al., ECOOP’17]

5

The bad thing of Iris Proof Mode

The implementation is tied to Iris

Iris Proof Mode
Our contribution:

77

MoSeL: A General, Extensible Modal Framework for
Interactive Proofs in Separation Logic

ROBBERT KREBBERS, Delft University of Technology, The Netherlands
JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France
RALF JUNG,MPI-SWS, Germany
JOSEPH TASSAROTTI, Carnegie Mellon University, USA
JAN-OLIVER KAISER,MPI-SWS, Germany
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France
DEREK DREYER,MPI-SWS, Germany

A number of tools have been developed for carrying out separation-logic proofs mechanically using an
interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which
offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,
IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to
a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation
logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the
bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we
have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very
different separation logics.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-
cation;

Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof
assistant, interactive theorem proving

ACM Reference Format:
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:
//doi.org/10.1145/3236772

1 INTRODUCTION
Over the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an
essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-
dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗, jung@mpi-
sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗,
janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,
arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.
∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART77
https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

5

The bad thing of Iris Proof Mode

The implementation is tied to Iris

Iris Proof Mode

Our contribution:

77

MoSeL: A General, Extensible Modal Framework for
Interactive Proofs in Separation Logic

ROBBERT KREBBERS, Delft University of Technology, The Netherlands
JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France
RALF JUNG,MPI-SWS, Germany
JOSEPH TASSAROTTI, Carnegie Mellon University, USA
JAN-OLIVER KAISER,MPI-SWS, Germany
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France
DEREK DREYER,MPI-SWS, Germany

A number of tools have been developed for carrying out separation-logic proofs mechanically using an
interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which
offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,
IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to
a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation
logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the
bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we
have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very
different separation logics.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-
cation;

Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof
assistant, interactive theorem proving

ACM Reference Format:
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:
//doi.org/10.1145/3236772

1 INTRODUCTION
Over the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an
essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-
dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗, jung@mpi-
sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗,
janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,
arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.
∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART77
https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

5

The bad thing of Iris Proof Mode

The implementation is tied to Iris

Iris Proof Mode
Our contribution:

77

MoSeL: A General, Extensible Modal Framework for
Interactive Proofs in Separation Logic

ROBBERT KREBBERS, Delft University of Technology, The Netherlands
JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France
RALF JUNG,MPI-SWS, Germany
JOSEPH TASSAROTTI, Carnegie Mellon University, USA
JAN-OLIVER KAISER,MPI-SWS, Germany
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France
DEREK DREYER,MPI-SWS, Germany

A number of tools have been developed for carrying out separation-logic proofs mechanically using an
interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which
offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,
IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to
a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation
logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the
bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we
have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very
different separation logics.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-
cation;

Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof
assistant, interactive theorem proving

ACM Reference Format:
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:
//doi.org/10.1145/3236772

1 INTRODUCTION
Over the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an
essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-
dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗, jung@mpi-
sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗,
janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,
arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.
∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART77
https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

6

Making IPM independent of Iris (1)

[. . .] we believe that our proof
mode is very generic, and can be
applied to a variety of different
embedded logics [. . .]

[Krebbers et. al., POPL’17]

7

Making IPM independent of Iris (2)

Doing it in a generic fashion turned out to be challenging:

I Iris is affine, not all separation logics are affine

P ∗ Q ` P (affine)

MoSeL supports general and affine separation logics, and mixtures thereof

I IPM has hard-wired support for Iris’s connectives, but other logics have other
bespoke connectives
MoSeL is parametric in the connectives/modalities of the logic

I Some separation logics (e.g. iGPS) are encoded in terms of another (e.g. Iris),
and mix both levels of abstraction
MoSeL’s tactics allow reasoning in a mixture of logics

I Lots of Coq engineering to make it actually usable
Backwards compatibility with IPM, performance, error messages, . . .

7

Making IPM independent of Iris (2)

Doing it in a generic fashion turned out to be challenging:

I Iris is affine, not all separation logics are affine

P ∗ Q ` P (affine)

MoSeL supports general and affine separation logics, and mixtures thereof

I IPM has hard-wired support for Iris’s connectives, but other logics have other
bespoke connectives
MoSeL is parametric in the connectives/modalities of the logic

I Some separation logics (e.g. iGPS) are encoded in terms of another (e.g. Iris),
and mix both levels of abstraction
MoSeL’s tactics allow reasoning in a mixture of logics

I Lots of Coq engineering to make it actually usable
Backwards compatibility with IPM, performance, error messages, . . .

7

Making IPM independent of Iris (2)

Doing it in a generic fashion turned out to be challenging:

I Iris is affine, not all separation logics are affine

P ∗ Q ` P (affine)

MoSeL supports general and affine separation logics, and mixtures thereof

I IPM has hard-wired support for Iris’s connectives, but other logics have other
bespoke connectives
MoSeL is parametric in the connectives/modalities of the logic

I Some separation logics (e.g. iGPS) are encoded in terms of another (e.g. Iris),
and mix both levels of abstraction
MoSeL’s tactics allow reasoning in a mixture of logics

I Lots of Coq engineering to make it actually usable
Backwards compatibility with IPM, performance, error messages, . . .

7

Making IPM independent of Iris (2)

Doing it in a generic fashion turned out to be challenging:

I Iris is affine, not all separation logics are affine

P ∗ Q ` P (affine)

MoSeL supports general and affine separation logics, and mixtures thereof

I IPM has hard-wired support for Iris’s connectives, but other logics have other
bespoke connectives
MoSeL is parametric in the connectives/modalities of the logic

I Some separation logics (e.g. iGPS) are encoded in terms of another (e.g. Iris),
and mix both levels of abstraction
MoSeL’s tactics allow reasoning in a mixture of logics

I Lots of Coq engineering to make it actually usable
Backwards compatibility with IPM, performance, error messages, . . .

8

Part #1: Basic tactics in IPM/MoSeL

9

Embedding separation logic entailments into Coq

Visible goal (with pretty printing):

~x : ~φ Variables and pure Coq hypotheses

Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

Actual Coq goal (without pretty printing):

~x : ~φ

Π
 Q

Where:
Π
 Q , ∗Π ` Q

9

Embedding separation logic entailments into Coq

Visible goal (with pretty printing):

~x : ~φ Variables and pure Coq hypotheses

Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

Actual Coq goal (without pretty printing):

~x : ~φ

Π
 Q

Where:
Π
 Q , ∗Π ` Q

10

Example: the iSplitL/iSplitR tactic

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]" .
iDestruct "H" as (x) "[H1|H2]" .
− iExists x .

iLeft .

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x

10

Example: the iSplitL/iSplitR tactic

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]" .
iDestruct "H" as (x) "[H1|H2]" .
− iExists x .

iLeft .
iSplitL "HP".

1 subgoal

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/1)
"HP" : P

"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Φ x

10

Example: the iSplitL/iSplitR tactic

Lemma example 1 {A} (P : iProp Σ) (Φ Ψ : A → iProp Σ) :
P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , (P ∗ Φ a) ∨ (P ∗ Ψ a) .

Proof .
iIntros "[HP H]" .
iDestruct "H" as (x) "[H1|H2]" .
− iExists x .

iLeft .

2 subgoals

A : Type

P : iProp Σ
Φ, Ψ : A → iProp Σ
x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

(2/2)
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

11

Example: Implementation of the iSplitL/iSplitR tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac sep split Π Π1 Π2 lr js Q1 Q2 :

envs split lr js Π = Some (Π1 ,Π2) →
(Π1 ` Q1) → (Π2 ` Q2) → Π ` Q1 ∗ Q2 .

Π1
 Q1 Π2
 Q2

Π1,Π2
 Q1 ∗ Q2

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

let Hs := eval vm compute in (INamed <$> Hs) in

eapply tac sep split with Left Hs ;
[pm reflexivity | |
fail "iSplitL: hypotheses" Hs "not found"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

11

Example: Implementation of the iSplitL/iSplitR tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac sep split Π Π1 Π2 lr js Q1 Q2 :

envs split lr js Π = Some (Π1 ,Π2) →
(Π1 ` Q1) → (Π2 ` Q2) → Π ` Q1 ∗ Q2 .

Π1
 Q1 Π2
 Q2

Π1,Π2
 Q1 ∗ Q2

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

let Hs := eval vm compute in (INamed <$> Hs) in

eapply tac sep split with Left Hs ;
[pm reflexivity | |
fail "iSplitL: hypotheses" Hs "not found"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

11

Example: Implementation of the iSplitL/iSplitR tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac sep split Π Π1 Π2 lr js Q1 Q2 :

envs split lr js Π = Some (Π1 ,Π2) →
(Π1 ` Q1) → (Π2 ` Q2) → Π ` Q1 ∗ Q2 .

Π1
 Q1 Π2
 Q2

Π1,Π2
 Q1 ∗ Q2

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

let Hs := eval vm compute in (INamed <$> Hs) in

eapply tac sep split with Left Hs ;
[pm reflexivity | |
fail "iSplitL: hypotheses" Hs "not found"

| (* goal 1 *)

| (* goal 2 *)] .

Report sensible error to the user

11

Example: Implementation of the iSplitL/iSplitR tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac sep split Π Π1 Π2 lr js Q1 Q2 :

envs split lr js Π = Some (Π1 ,Π2) →
(Π1 ` Q1) → (Π2 ` Q2) → Π ` Q1 ∗ Q2 .

Π1
 Q1 Π2
 Q2

Π1,Π2
 Q1 ∗ Q2

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

let Hs := eval vm compute in (INamed <$> Hs) in

eapply tac sep split with Left Hs ;
[pm reflexivity | |
fail "iSplitL: hypotheses" Hs "not found"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

12

Making MoSeL separation logic independent

First step: Make everything parametric in a BI logic

Structure bi := Bi {

bi car :> Type;

bi pure : Prop → bi car;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operations and axioms *)

}.

Notation "P ` Q" := (bi entails P Q).

Record envs (PROP : bi) :=

Envs { env spatial : env PROP; (* the spatial context Π *)

env counter : positive (* a counter for fresh name generation *) }.

Definition envs entails {PROP} (∆ : envs PROP) (Q : PROP) : Prop :=

p envs wf ∆q ∧ [∗] env spatial ∆ ` Q.

Useful fact: primitive records provide a significant performance boost

12

Making MoSeL separation logic independent

First step: Make everything parametric in a BI logic

Structure bi := Bi {

bi car :> Type;

bi pure : Prop → bi car;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operations and axioms *)

}.

Notation "P ` Q" := (bi entails P Q).

Record envs (PROP : bi) :=

Envs { env spatial : env PROP; (* the spatial context Π *)

env counter : positive (* a counter for fresh name generation *) }.

Definition envs entails {PROP} (∆ : envs PROP) (Q : PROP) : Prop :=

p envs wf ∆q ∧ [∗] env spatial ∆ ` Q.

Useful fact: primitive records provide a significant performance boost

12

Making MoSeL separation logic independent

First step: Make everything parametric in a BI logic

Structure bi := Bi {

bi car :> Type;

bi pure : Prop → bi car;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operations and axioms *)

}.

Notation "P ` Q" := (bi entails P Q).

Record envs (PROP : bi) :=

Envs { env spatial : env PROP; (* the spatial context Π *)

env counter : positive (* a counter for fresh name generation *) }.

Definition envs entails {PROP} (∆ : envs PROP) (Q : PROP) : Prop :=

p envs wf ∆q ∧ [∗] env spatial ∆ ` Q.

Useful fact: primitive records provide a significant performance boost

13

Part #2: Affine versus general BI logics

P ∗Q ` P

14

Affinety in IPM tactics

Problem: many IPM tactics relied on affinety of Iris

P ∗ Q ` P (affine)

For example:

iClear

Π
 Q

Π,P
 Q

iAssumption

Π,P
 P

Many logics (e.g. CFML and CHL) are not affine, MoSeL should support them

14

Affinety in IPM tactics

Problem: many IPM tactics relied on affinety of Iris

P ∗ Q ` P (affine)

For example:

iClear

Π
 Q

Π,P
 Q

iAssumption

Π,P
 P

Many logics (e.g. CFML and CHL) are not affine, MoSeL should support them

15

What to do with these tactics?

We cannot remove these tactics:

I That destroys backwards compatibility with IPM

We cannot include these tactics just for affine logics:

I Some logics use a mixture of affine and linear resources
For example: Fairis [Tassarotti et. al., ESOP’17]

Better solution: add precise side-conditions to these tactics

15

What to do with these tactics?

We cannot remove these tactics:

I That destroys backwards compatibility with IPM

We cannot include these tactics just for affine logics:

I Some logics use a mixture of affine and linear resources
For example: Fairis [Tassarotti et. al., ESOP’17]

Better solution: add precise side-conditions to these tactics

15

What to do with these tactics?

We cannot remove these tactics:

I That destroys backwards compatibility with IPM

We cannot include these tactics just for affine logics:

I Some logics use a mixture of affine and linear resources
For example: Fairis [Tassarotti et. al., ESOP’17]

Better solution: add precise side-conditions to these tactics

16

Affine and absorbing propositions

Two classes of propositions:

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

The new tactics:

iClear

Π
 Q affine(P) or absorbing(Q)

Π,P
 Q

iAssumption

affine(Π) or absorbing(Q)

Π,Q
 Q

Key features:

I Full backwards compatibility with Iris: all Iris propositions are affine and absorbing
because emp , True in Iris

I Provides support for logics with both linear and affine resources

16

Affine and absorbing propositions

Two classes of propositions:

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

The new tactics:

iClear

Π
 Q affine(P) or absorbing(Q)

Π,P
 Q

iAssumption

affine(Π) or absorbing(Q)

Π,Q
 Q

Key features:

I Full backwards compatibility with Iris: all Iris propositions are affine and absorbing
because emp , True in Iris

I Provides support for logics with both linear and affine resources

17

Affine and absorbing propositions in Coq

Type classes:

Class Affine {PROP : bi} (Q : PROP) := affine : Q ` emp.

Class Absorbing {PROP : bi} (P : PROP) := absorbing : <absorb> P ` P.

(* where <absorb> P := P ∗ True *)

Instances:

I To capture that both classes are closed under most connectives

I To allow logics to tell MoSeL that their bespoke connectives are affine/absorbing

Tactics are parameterized by said type classes:

Lemma tac clear ∆∆’ i p P Q :

envs lookup delete true i ∆ = Some (p,P,∆’) →
(if p then TCTrue else TCOr (Affine P) (Absorbing Q)) →
envs entails ∆’ Q →
envs entails ∆ Q.

18

Part #3: Intuitionistic propositions

� P ` � P ∗� P

19

Classes of separation logic propositions in MoSeL

Kind # of times it should be used
Arbitrary proposition 1 times
Affine proposition 0-1 times

Persistent proposition 1-n times
Intuitionistic proposition 0-n times (= affine & persistent)

Persistent/intuitionistic propositions are common (especially in Iris derivatives)
⇒ MoSeL needs special support for them

19

Classes of separation logic propositions in MoSeL

Kind # of times it should be used
Arbitrary proposition 1 times
Affine proposition 0-1 times
Persistent proposition 1-n times

Intuitionistic proposition 0-n times (= affine & persistent)

Persistent/intuitionistic propositions are common (especially in Iris derivatives)
⇒ MoSeL needs special support for them

19

Classes of separation logic propositions in MoSeL

Kind # of times it should be used
Arbitrary proposition 1 times
Affine proposition 0-1 times
Persistent proposition 1-n times
Intuitionistic proposition 0-n times (= affine & persistent)

Persistent/intuitionistic propositions are common (especially in Iris derivatives)
⇒ MoSeL needs special support for them

19

Classes of separation logic propositions in MoSeL

Kind # of times it should be used
Arbitrary proposition 1 times
Affine proposition 0-1 times
Persistent proposition 1-n times
Intuitionistic proposition 0-n times (= affine & persistent)

Persistent/intuitionistic propositions are common (especially in Iris derivatives)
⇒ MoSeL needs special support for them

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

(1/1)
P ∗ (∃ a : A , Φ a ∨ Ψ a) −∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

(1/1)
P ∗ (∃ a : A , Φ a ∨ Ψ a) −∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H" : ∃ a : A , Φ a ∨ Ψ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

2 subgoals

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

(2/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

-

2 subgoals

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

(2/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

-

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x ∨ P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x ∨ P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H1" : Φ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

-

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

-

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Φ a ∨ P ∗ P ∗ Ψ a

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x ∨ P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Φ x ∨ P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

2 subgoals

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
P

(2/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+

2 subgoals

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
P

(2/2)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
P

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
P

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+ iSplitR; iAssumption.

1 subgoal

PROP : bi

A : Type

P : PROP

Persistent0 : Persistent P

Affine0 : Affine P

Φ, Ψ : A → PROP

x : A

(1/1)
"HP" : P

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P ∗ Ψ x

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+ iSplitR; iAssumption.

No more subgoals .

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+ iSplitR; iAssumption.

Qed.

No more subgoals .

20

Intuitionistic propositions in action

Lemma example 3 {PROP : bi} {A} (P : PROP)
‘{!Persistent P , !Affine P} (Φ Ψ : A → PROP) :

P ∗ (∃ a , Φ a ∨ Ψ a) −∗ ∃ a , Φ a ∨ (P ∗ P ∗ Ψ a) .
Proof .

iIntros "[#HP H]".

iDestruct "H" as (x) "[H1|H2]".

- iExists x.

iLeft.

iAssumption.

- iExists x.

iRight.

iSplitR.

+ iAssumption.

+ iSplitR; iAssumption.

Qed.

example 3 is defined

21

Intuitionistic propositions from the user’s point of view

Visible goal in MoSeL:

~x : ~φ Variables and pure Coq hypotheses

Γ Intuitionistic separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

We thus need to extend the form of the entailment relation:

Γ; Π
 Q

Requirements:

I The context Γ should be duplicable (by tactics like iSplitL)

I The context Γ should be droppable (by tactics like iAssumption)

I The context Γ should be closed under elimination of ∨, ∧, ∃, ∀, p q, . . .

21

Intuitionistic propositions from the user’s point of view

Visible goal in MoSeL:

~x : ~φ Variables and pure Coq hypotheses

Γ Intuitionistic separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

We thus need to extend the form of the entailment relation:

Γ; Π
 Q

Requirements:

I The context Γ should be duplicable (by tactics like iSplitL)

I The context Γ should be droppable (by tactics like iAssumption)

I The context Γ should be closed under elimination of ∨, ∧, ∃, ∀, p q, . . .

21

Intuitionistic propositions from the user’s point of view

Visible goal in MoSeL:

~x : ~φ Variables and pure Coq hypotheses

Γ Intuitionistic separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

We thus need to extend the form of the entailment relation:

Γ; Π
 Q

Requirements:

I The context Γ should be duplicable (by tactics like iSplitL)

I The context Γ should be droppable (by tactics like iAssumption)

I The context Γ should be closed under elimination of ∨, ∧, ∃, ∀, p q, . . .

21

Intuitionistic propositions from the user’s point of view

Visible goal in MoSeL:

~x : ~φ Variables and pure Coq hypotheses

Γ Intuitionistic separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Separation logic goal

We thus need to extend the form of the entailment relation:

Γ; Π
 Q

Requirements:

I The context Γ should be duplicable (by tactics like iSplitL)

I The context Γ should be droppable (by tactics like iAssumption)

I The context Γ should be closed under elimination of ∨, ∧, ∃, ∀, p q, . . .

22

How to model persistent/intuitionistic propositions

I We defined affine/absorbing propositions in terms of the BI connectives

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

I For persistent propositions in Iris this is impossible [Bizjak&Birkedal, MFPS’17]

I We extend the signature of BIs with a persistence modality � and define:

persistent(P) , P ` �P intuitionistic(P) , P ` 〈affine〉�P

where 〈affine〉Q , Q ∧ emp

I Think of �P as “P holds for resources that can be duplicated”

I This gives rise to what we call a MoBI: BI with �

Question to answer: what are the laws for MoBIs?

22

How to model persistent/intuitionistic propositions

I We defined affine/absorbing propositions in terms of the BI connectives

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

I For persistent propositions in Iris this is impossible [Bizjak&Birkedal, MFPS’17]

I We extend the signature of BIs with a persistence modality � and define:

persistent(P) , P ` �P intuitionistic(P) , P ` 〈affine〉�P

where 〈affine〉Q , Q ∧ emp

I Think of �P as “P holds for resources that can be duplicated”

I This gives rise to what we call a MoBI: BI with �

Question to answer: what are the laws for MoBIs?

22

How to model persistent/intuitionistic propositions

I We defined affine/absorbing propositions in terms of the BI connectives

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

I For persistent propositions in Iris this is impossible [Bizjak&Birkedal, MFPS’17]

I We extend the signature of BIs with a persistence modality � and define:

persistent(P) , P ` �P intuitionistic(P) , P ` 〈affine〉�P

where 〈affine〉Q , Q ∧ emp

I Think of �P as “P holds for resources that can be duplicated”

I This gives rise to what we call a MoBI: BI with �

Question to answer: what are the laws for MoBIs?

22

How to model persistent/intuitionistic propositions

I We defined affine/absorbing propositions in terms of the BI connectives

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

I For persistent propositions in Iris this is impossible [Bizjak&Birkedal, MFPS’17]

I We extend the signature of BIs with a persistence modality � and define:

persistent(P) , P ` �P intuitionistic(P) , P ` 〈affine〉�P

where 〈affine〉Q , Q ∧ emp

I Think of �P as “P holds for resources that can be duplicated”

I This gives rise to what we call a MoBI: BI with �

Question to answer: what are the laws for MoBIs?

22

How to model persistent/intuitionistic propositions

I We defined affine/absorbing propositions in terms of the BI connectives

affine(P) , P ` emp (propositions that can be “thrown away”)

absorbing(Q) , Q ∗ True ` Q (propositions that can “suck up others”)

I For persistent propositions in Iris this is impossible [Bizjak&Birkedal, MFPS’17]

I We extend the signature of BIs with a persistence modality � and define:

persistent(P) , P ` �P intuitionistic(P) , P ` 〈affine〉�P

where 〈affine〉Q , Q ∧ emp

I Think of �P as “P holds for resources that can be duplicated”

I This gives rise to what we call a MoBI: BI with �

Question to answer: what are the laws for MoBIs?

23

Primitive laws of the persistence modality

I �P ` �Q, provided P ` Q
We can introduce �

I �P ` �(�P)

I emp ` � emp
emp is persistent

I (∀x . �P) ` � (∀x . P) and � (∃x . P) ` (∃x . �P)
Closed under ∀, ∃, ∧, ∨, True, False (reverse directions are admissible)

I (�P) ∗ Q ` �P
Persistent propositions are absorbing (remember, they can be used 1-n times)

I (�P) ∧ Q ` P ∗ Q
From this we get the elimination rules (�P) ` P ∗ (�P) and (�P) ∧ emp ` P

23

Primitive laws of the persistence modality

I �P ` �Q, provided P ` Q
We can introduce �

I �P ` �(�P)

I emp ` � emp
emp is persistent

I (∀x . �P) ` � (∀x . P) and � (∃x . P) ` (∃x . �P)
Closed under ∀, ∃, ∧, ∨, True, False (reverse directions are admissible)

I (�P) ∗ Q ` �P
Persistent propositions are absorbing (remember, they can be used 1-n times)

I (�P) ∧ Q ` P ∗ Q
From this we get the elimination rules (�P) ` P ∗ (�P) and (�P) ∧ emp ` P

23

Primitive laws of the persistence modality

I �P ` �Q, provided P ` Q
We can introduce �

I �P ` �(�P)

I emp ` � emp
emp is persistent

I (∀x . �P) ` � (∀x . P) and � (∃x . P) ` (∃x . �P)
Closed under ∀, ∃, ∧, ∨, True, False (reverse directions are admissible)

I (�P) ∗ Q ` �P
Persistent propositions are absorbing (remember, they can be used 1-n times)

I (�P) ∧ Q ` P ∗ Q
From this we get the elimination rules (�P) ` P ∗ (�P) and (�P) ∧ emp ` P

23

Primitive laws of the persistence modality

I �P ` �Q, provided P ` Q
We can introduce �

I �P ` �(�P)

I emp ` � emp
emp is persistent

I (∀x . �P) ` � (∀x . P) and � (∃x . P) ` (∃x . �P)
Closed under ∀, ∃, ∧, ∨, True, False (reverse directions are admissible)

I (�P) ∗ Q ` �P
Persistent propositions are absorbing (remember, they can be used 1-n times)

I (�P) ∧ Q ` P ∗ Q
From this we get the elimination rules (�P) ` P ∗ (�P) and (�P) ∧ emp ` P

24

Derived laws of the intuitionistic modality

Let �P , 〈affine〉�P

I The usual laws for monotonicity/idempotence/commuting with BI connectives

I �P ` emp
Intuitionistic propositions are affine

I �P ` P
Elimination of the � modality

I �P a` �P ∗�P
Intuitionistic propositions are duplicable

I �P ∗�P a` �P ∧�P
∧ and ∗ coincide for intuitionistic propositions

24

Derived laws of the intuitionistic modality

Let �P , 〈affine〉�P

I The usual laws for monotonicity/idempotence/commuting with BI connectives

I �P ` emp
Intuitionistic propositions are affine

I �P ` P
Elimination of the � modality

I �P a` �P ∗�P
Intuitionistic propositions are duplicable

I �P ∗�P a` �P ∧�P
∧ and ∗ coincide for intuitionistic propositions

24

Derived laws of the intuitionistic modality

Let �P , 〈affine〉�P

I The usual laws for monotonicity/idempotence/commuting with BI connectives

I �P ` emp
Intuitionistic propositions are affine

I �P ` P
Elimination of the � modality

I �P a` �P ∗�P
Intuitionistic propositions are duplicable

I �P ∗�P a` �P ∧�P
∧ and ∗ coincide for intuitionistic propositions

24

Derived laws of the intuitionistic modality

Let �P , 〈affine〉�P

I The usual laws for monotonicity/idempotence/commuting with BI connectives

I �P ` emp
Intuitionistic propositions are affine

I �P ` P
Elimination of the � modality

I �P a` �P ∗�P
Intuitionistic propositions are duplicable

I �P ∗�P a` �P ∧�P
∧ and ∗ coincide for intuitionistic propositions

25

Why do the laws of the persistence modality make sense?

I They satisfy the requirements from MoSeL’s UI point of view

I They are backwards compatible with Iris’s laws

I They are compatible with traditional classical/intuitionstic separation logic

I They are compatible with Fairis [Tassarotti et. al., ESOP’17], which features
mixed affine/linear resources

I We have developed a model based on ordered resource algebras where the laws
of � correspond to canonical properties of the order relation
This model generalizes classical/intuitionistic separation logic, Iris, and Fairis

26

The entailment relation and some tactics

The entailment relation:

Γ; Π
 Q , �
(∧

Γ
)
∗∗Π ` Q

where �P , 〈affine〉�P

Some tactics:

iSplitL/iSplitR

Γ; Π1
 Q1 Γ; Π2
 Q2

Γ; Π1,Π2
 Q1 ∗ Q2

iIntros-#

Γ,P; Π
 Q intuitionistic(P)

Γ; Π,P
 Q

26

The entailment relation and some tactics

The entailment relation:

Γ; Π
 Q , �
(∧

Γ
)
∗∗Π ` Q

where �P , 〈affine〉�P

Some tactics:

iSplitL/iSplitR

Γ; Π1
 Q1 Γ; Π2
 Q2

Γ; Π1,Π2
 Q1 ∗ Q2

iIntros-#

Γ,P; Π
 Q intuitionistic(P)

Γ; Π,P
 Q

27

Part #4: Extensibility of MoSeL

28

Making MoSeL tactics modular using type classes (1)

We want iDestruct "H" as "[H1 H2]" (for example) to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We follow the IPM approach to use type classes for that:

Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) := into sep : P ` Q1 ∗ Q2 .
Instance into sep sep P Q : IntoSep (P ∗ Q) P Q .
Instance into sep later P Q1 Q2 : IntoSep P Q1 Q2 → IntoSep (. P) (. Q1) (. Q2) .
Instance into sep mapsto l q v : IntoSep (l 7→{q} v) (l 7→{q/2} v) (l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
(if p then IntoAnd true P P1 P2 else IntoSep P P1 P2) →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) ∆ = Some ∆’ →
envs entails ∆’ Q → envs entails ∆ Q .

28

Making MoSeL tactics modular using type classes (1)

We want iDestruct "H" as "[H1 H2]" (for example) to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We follow the IPM approach to use type classes for that:

Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) := into sep : P ` Q1 ∗ Q2 .
Instance into sep sep P Q : IntoSep (P ∗ Q) P Q .
Instance into sep later P Q1 Q2 : IntoSep P Q1 Q2 → IntoSep (. P) (. Q1) (. Q2) .
Instance into sep mapsto l q v : IntoSep (l 7→{q} v) (l 7→{q/2} v) (l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
(if p then IntoAnd true P P1 P2 else IntoSep P P1 P2) →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) ∆ = Some ∆’ →
envs entails ∆’ Q → envs entails ∆ Q .

29

Making MoSeL tactics modular using type classes (2)

I We made every tactic MoSeL parametric by a type class

I Generalized these type classes to support general BIs

I Since the type classes are parametric in the choice of the BI PROP:

Class IntoSep {PROP : bi} (P Q1 Q2 : PROP) := into sep : P ` Q1 ∗ Q2.

We now also support connectives that involve multiple BIs:

Global Instance into sep embed ‘{BiEmbed PROP PROP’} P Q1 Q2 :

IntoSep P Q1 Q2 → IntoSep dPe dQ1 e dQ2 e.

30

Many modalities

Many logics come with bespoke modalities that need custom introduction and
elimination tactics, for example:

�-intro

Γ; ∅
 Q affine(Π)

Γ; Π
 �Q

�-intro

Γ; ∅
 Q

Γ; Π
 �Q

〈affine〉-intro
Γ; ∅
 Q affine(Π)

Γ; Π
 〈affine〉Q

.-intro
Γ′; Π′
 Q Γ ` . Γ′ Π ` .Π′

Γ; Π
 .Q

31

Generic tactics for modalities

MoSeL comes with generic support for introduction and elimination of modalities

For introduction:

I One has to choose the action on both contexts that should be performed

I That’s done by declaring a type class instance

I As part of which one has to prove that the required laws hold

31

Generic tactics for modalities

MoSeL comes with generic support for introduction and elimination of modalities

For introduction:

I One has to choose the action on both contexts that should be performed

I That’s done by declaring a type class instance

I As part of which one has to prove that the required laws hold

32

Generic tactics for modalities in Coq

Inductive modality action (PROP1 : bi) : bi → Type :=

| MIEnvIsEmpty {PROP2 : bi} : modality action PROP1 PROP2

| MIEnvForall (C : PROP1 → Prop) : modality action PROP1 PROP1

| MIEnvTransform {PROP2 : bi} (C : PROP2 → PROP1 → Prop) : modality action PRO

P1 PROP2

| MIEnvClear {PROP2} : modality action PROP1 PROP2

| MIEnvId : modality action PROP1 PROP1.

Record modality (PROP1 PROP2 : bi) := Modality {

modality car :> PROP1 → PROP2;

modality intuitionistic action : modality action PROP1 PROP2;

modality spatial action : modality action PROP1 PROP2;

(* The modality laws, which depend on the fields modality intuitionistic action

and modality spatial action *) }.

Class FromModal {PROP1 PROP2 : bi} (M : modality PROP1 PROP2)

(P : PROP2) (Q : PROP1) := from modal : M Q ` P.

Instance from modal affinely P : FromModal modality affinely (<affine> P) P.

33

Part #5: Conclusions

34

What’s more in the paper?

I Instantiations of MoSeL using 6 very different logics
Iris, Fairis, iGPS, CFML, CHL, our ordered RA model

I Semi-automated tactics using MoSeL for CFML and CHL
To support read-only permissions in CFML

I Reasoning in mixed logics (iGPS and Iris)

I A generic model for MoBIs based on ordered resource algebras

77

MoSeL: A General, Extensible Modal Framework for
Interactive Proofs in Separation Logic

ROBBERT KREBBERS, Delft University of Technology, The Netherlands
JACQUES-HENRI JOURDAN, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, France
RALF JUNG,MPI-SWS, Germany
JOSEPH TASSAROTTI, Carnegie Mellon University, USA
JAN-OLIVER KAISER,MPI-SWS, Germany
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France
DEREK DREYER,MPI-SWS, Germany

A number of tools have been developed for carrying out separation-logic proofs mechanically using an
interactive proof assistant. One of the most advanced such tools is the Iris Proof Mode (IPM) for Coq, which
offers a rich set of tactics for making separation-logic proofs look and feel like ordinary Coq proofs. However,
IPM is tied to a particular separation logic (namely, Iris), thus limiting its applicability.

In this paper, we propose MoSeL, a general and extensible Coq framework that brings the benefits of IPM to
a much larger class of separation logics. Unlike IPM, MoSeL is applicable to both affine and linear separation
logics (and combinations thereof), and provides generic tactics that can be easily extended to account for the
bespoke connectives of the logics with which it is instantiated. To demonstrate the effectiveness of MoSeL, we
have instantiated it to provide effective tactical support for interactive and semi-automated proofs in six very
different separation logics.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Program verifi-
cation;

Additional Key Words and Phrases: Separation logic, logic of bunched implications, modal logic, Coq proof
assistant, interactive theorem proving

ACM Reference Format:
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic. Proc. ACM Program. Lang. 2, ICFP, Article 77 (September 2018), 30 pages. https:
//doi.org/10.1145/3236772

1 INTRODUCTION
Over the past 20 years, separation logic [O’Hearn et al. 2001; Reynolds 2002] has come to play an
essential role in the program verification toolbox, with a wide range of variations and applications.

Authors’ addresses: Robbert Krebbers, Delft University of Technology, mail@robbertkrebbers.nl; Jacques-Henri Jour-
dan, LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, jacques-henri.jourdan@lri.fr; Ralf Jung, MPI-SWS∗, jung@mpi-
sws.org; Joseph Tassarotti, Carnegie Mellon University, jtassaro@andrew.cmu.edu; Jan-Oliver Kaiser, MPI-SWS∗,
janno@mpi-sws.org; Amin Timany, imec-Distrinet, KU Leuven, amin.timany@cs.kuleuven.be; Arthur Charguéraud, Inria,
arthur.chargueraud@inria.fr; Derek Dreyer, MPI-SWS∗, dreyer@mpi-sws.org.
∗ Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/9-ART77
https://doi.org/10.1145/3236772

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 77. Publication date: September 2018.

35

Thank you!

Download MoSeL at http://iris-project.org/

http://iris-project.org/

