
An Asynchronous Soundness Theorem
for

Concurrent Separation Logic

Paul-André Melliès Léo Stefanesco

IRIF, CNRS & Université Paris Diderot

Séminaire Gallium
4 juin 2018

Summary
• The imperative concurrent language and its semantics

• Concurrent separation Logic and its semantics

• Soundness theorems: relating those semantics

!2

Summary
• The imperative concurrent language and its semantics

• Concurrent separation Logic and its semantics

• Soundness theorems: relating those semantics

!2

Asynchronous Graphs

!3

Topological Intuition

!4

v

u

u´

v ´

Asynchronous Morphisms

!5

u

v

v
,

u
,

F

F F

Fu

v

v
,

u
,

It’s a graph homomorphism, such that:

Asynchronous Graphs with Environment

!6

m1 m1

m2

m3

A Simple Concurrent Language

“Assembly language”

Source language

State transitions

is the memory and is the set of held lockswhere
!8

A Simple Concurrent Language

Asynchronous Transition System

Machine model

!9

Code-acyclic
asynchronous graph

Asynchronous Transition System

Machine model

!9

Code-acyclic
asynchronous graph

Two semantics:

Asynchronous Transition System

Machine model

!9

Code-acyclic
asynchronous graph

is an Environment 1-fibration = “the Environment can always

 execute every instructions”

Two semantics:

Machine Models for the Code

Code-acyclic
asynchronous graph

Machine modelAsynchronous graph of machine states

Nodes:

Edges:

is a tile when:

Asynchronous graph of locks

Nodes:

is a tile when:

!10

Edges:

Semantics of leaves

such that:

There is a tile whenever

the footprints are independent

!11

m2 m2

m1

x y

Graphical representation

Non terminating
executions

!12

Sequential Composition

C C’

!13

Conditionals

B

¬ B

B

C

C’
nop

nop

!14

Parallel Product:
Nodes: such that

Parallel Product:
Nodes: such that

Edges: an edge is a pair of edges

andin in

Parallel Product:
Nodes: such that

Edges: an edge is a pair of edges

andin in

Parallel Product:
Nodes: such that

Edges: an edge is a pair of edges

and

Tiles:

if

!15

in in

Morphism between the two semantics

Morphisms for leaves

They are preserved by the constructions

!16

Separation Logic
Hoare triples:

 are predicates on Logical States

!17

Semantics:

A few concurrent separation logics

Iris 2.0 (2016)

Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina
(2011)

FSL++
(2017)

Disel (2018)

by Ilya Sergey !18

A few concurrent separation logics

Iris 2.0 (2016)

Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina
(2011)

FSL++
(2017)

Disel (2018)

by Ilya Sergey !18

Concurrent Separation Logic (CSL)

!19

Separated States

σC

σ(r2)

σ(r1)

σF
The Code The Environment

The Shared
Resources

!20

Separated States

σC
σ(r2)

σ(r1)

σF
The Code The Environment

The Shared
Resources

!20

Separated States

σC

σ(r2)

σ(r1)

σF
The Code The Environment

The Shared
Resources

!20

Semantics of derivation trees

The semantics of a derivation tree

is an Asynchronous Transition System over separated states

• The initial states are all the separated states that satisfy P

• The final states all satisfy Q

• Each of the M satisfies G

• The edges/moves are of the form:
!21

Machine Model of Separated States

!22

Two kinds of transitions:

States: separated states

Tiles: so that they correspond to tiles in

Asynchronous Graph Morphism

There is an asynchronous graph morphism

with

!23

Soundness theorems

• “A well specified program does not go wrong”

• Memory safety, etc…

• Data-race freedom

• Precondition, postcondition

!24

1-soundness
Theorem 1

is an op-fibration on Code transitions.

!25

2-soundness
Theorem 2

is a 2-fibration.

!26

The End

