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Asynchronous Graphs
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Topological Intuition
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Asynchronous Morphisms
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It’s a graph homomorphism, such that:



Asynchronous Graphs with Environment
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A Simple Concurrent Language



“Assembly language”

Source language

State transitions

is the memory and is the set of held lockswhere
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A Simple Concurrent Language



Asynchronous Transition System

Machine model
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Two semantics:



Asynchronous Transition System

Machine model
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Code-acyclic 
asynchronous graph

is an Environment 1-fibration = “the Environment can always

     execute every instructions”

Two semantics:



Machine Models for the Code

Code-acyclic 
asynchronous graph

Machine modelAsynchronous graph of machine states

Nodes:

Edges:

is a tile when:

Asynchronous graph of locks

Nodes:

is a tile when:
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Edges:



Semantics of leaves

such that:

There is a tile whenever

the footprints are independent
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Graphical representation

Non terminating 
executions

!12



Sequential Composition

C C’
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Conditionals
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Parallel Product:
Nodes: such that
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Parallel Product:
Nodes: such that

Edges:   an edge is a pair of edges

and

Tiles:

if
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Morphism between the two semantics

Morphisms for leaves

They are preserved by the constructions
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Separation Logic
Hoare triples:

 are predicates on Logical States
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Semantics:



A few concurrent separation logics

Iris 2.0 (2016)

Iris 3.0 (2017)

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)
Hobor-al (2008)

FSL (2016)

Hobor-Gherghina 
(2011)

FSL++ 
(2017)

Disel (2018)

by Ilya Sergey !18
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Concurrent Separation Logic (CSL)
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Separated States

σC

σ(r2)

σ(r1)

σF
The Code The Environment

The Shared 
Resources
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Semantics of derivation trees

The semantics of a derivation tree

is an Asynchronous Transition System over separated states

• The initial states are all the separated states that satisfy P 


• The final states all satisfy Q


• Each of the M satisfies G


• The edges/moves are of the form:
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Machine Model of Separated States
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Two kinds of transitions:

States: separated states

Tiles: so that they correspond to tiles in 



Asynchronous Graph Morphism

There is an asynchronous graph morphism

with
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Soundness theorems

• “A well specified program does not go wrong”


• Memory safety, etc…


• Data-race freedom


• Precondition, postcondition
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1-soundness
Theorem 1

is an op-fibration on Code transitions.
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2-soundness
Theorem 2

is a 2-fibration.
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The End


