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Introduction: the context

Functional programming (FP) languages are popular tools to build

systems (parsers, compilers, theorem provers...) that manipulate

the syntax of various programming languages and logics.

Variable binding is a common denominator of these objects.

But only few FP languages natively provide constructs to handle

them. However a number of libraries exists along with first class

extensions.

Libs: AlphaLib, Cαml

Languages: FreshML, Beluga...
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Introduction: our approach

Successful efforts in the logic programming world, using an elegant

mixing of λ-terms and higher-order logic: λ-tree syntax.

We describe a new FP language, MLTS, based on these

techniques.

Work in progress / Premilinary work
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The substitution case

Our sample example: substitution

v a l s u b s t : term −> v a r −> term −> term

Such that “subst t x u” is t[x\u].

3



Handmade: The ”naive” way...

A simple way to handle bindings in vanilla OCaml is to use strings

to represent variables:

t y p e tm =

| Var o f s t r i n g

| App o f term ∗ term

| Abs o f s t r i n g ∗ term

And then proceed recursively:

l e t r e c s u b s t t x u = match t w i t h

| Var y −> i f x = y then u e l s e Var y

| App (m, n ) −> App ( s u b s t m x u ,

s u b s t n x u )

| Abs ( y , body ) −> ?
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Handmade: ...the painful way

| Abs ( y , body ) −>
i f ( x = y ) then

Abs ( y , body )

e l s e Abs ( y , s u b s t body x u )

And what if t contains y ? y instances in t would be captured.

We need to check for free variables in t and rename them if

necessary...
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Handmade

There are several approches to handle bindings:

• Var as strings

• De Bruijn’s nameless dummies [de Bruijn, 1979]

But they all need to be carefully implemented.

Can we automate this tedious and pervasive task ?

Cαml [Pottier, 2006]

6



Handmade

There are several approches to handle bindings:

• Var as strings

• De Bruijn’s nameless dummies [de Bruijn, 1979]

But they all need to be carefully implemented.

Can we automate this tedious and pervasive task ?

Cαml [Pottier, 2006]

6



Handmade

There are several approches to handle bindings:

• Var as strings

• De Bruijn’s nameless dummies [de Bruijn, 1979]

But they all need to be carefully implemented.

Can we automate this tedious and pervasive task ?

Cαml [Pottier, 2006]

6



Cαml

Cαml is a tool that generates an OCaml module to manipulate

datatypes with binders. (example from the Little Calculist blog)

s o r t v a r

t y p e tm =

| Var o f atom v a r

| App o f tm ∗ tm

| Abs o f < lambda >

t y p e lambda b i n d s v a r = atom v a r ∗ i n n e r tm

7
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Cαml

l e t r e c s u b s t t x u =

match t w i t h

| Var y −> i f Var . Atom . e q u a l x y

then u

e l s e Var y

| App (m, n ) −> App ( s u b s t m x u , s u b s t n x u )

| Abs abs −>
l e t x ’ , body = open lambda abs i n

Abs ( c r e a t e l a m b d a ( x ’ , s u b s t body x u ) )
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MLTS version of subst

t y p e tm =

| App o f tm ∗ tm

| Abs o f tm => tm

; ;

Some inhabitants :

λx . x

λx . (x x)

(λx . x) (λx . x)

Abs (X\ X)

Abs (X\ App (X, X) )

App ( Abs (X\ X) , Abs (X\ X) )
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MLTS version of subst

...

l e t r e c s u b s t t x u =

match ( x , t ) w i t h
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MLTS version of subst

...

l e t r e c s u b s t t x u =

match ( x , t ) w i t h

| nab X i n (X, X) −> u

nab X in (X, X) will only match if x = t = X is a nominal.
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MLTS version of subst

...

l e t r e c s u b s t t x u =

match ( x , t ) w i t h

| nab X i n (X, X) −> u

| nab X Y i n (X, Y) −> Y

nab X Y in (X, Y) will only match for two distinct nominals.
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MLTS version of subst

...

l e t r e c s u b s t t x u =

match ( x , t ) w i t h

| nab X i n (X, X) −> u

| nab X Y i n (X, Y) −> Y

| ( x , App (m, n ) ) −>
App ( s u b s t m x u , s u b s t n x u )
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MLTS version of subst

...

l e t r e c s u b s t t x u =

match ( x , t ) w i t h

| nab X i n (X, X) −> u

| nab X Y i n (X, Y) −> Y

| ( x , App (m, n ) ) −>
App ( s u b s t m x u , s u b s t n x u )

| ( x , Abs r ) −> Abs (Y\ s u b s t ( r @ Y) x u )

In Abs(Y\ subst (r @ Y) x u), the abstraction is opened,

modified and rebuilt without ever freeing any bound variable.
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MLTS version of subst

How to perform that substitution : (λy . y x)[x\λz . z ]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ (App(Y, X)))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

15
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Arity typing

In order to formalize MLTS, we need to introduce a very simple

type system called Arity typing due to Martin-Löf

[Nordstrom et al., 1990]. Arity types for MLTS are either:

• The primitive arity 0

• An expression of the form 0 → · · · → 0

The primitive type is used to denote most programming language

expressions and phrases. The type 0 → · · · → 0, with n + 1

occurrences of 0, is the type used to denote the “syntactic

category of an n-ary abstraction”.
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MLTS features: =>, backslash and at

The type constructor => is used to declare bindings (of non-zero

arity) in datatypes.

The infix operator \ introduces an abstraction of a nominal over

its scope. Such an expression is applied to it arguments using @,

thus eliminating the abstraction.

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

Example

((X\ body) @ Y) denotes the result of instantiating the

abstracted nominal X with the nominal Y in body.
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MLTS features: new and nab

The new X in binding operator provides a scope within

expressions in which a new nominal X is available.

Patterns can contain the nab X in binder: in its scope the symbol

X can match constructors introduced by new and \.

Pattern variables can have non-zero arity and they can be applied

(using @) to an argument list that consists of distinct variables that

are bound in the scope of pattern variables:

Abs(X\ r @ X)

∃r . Abs(X\ r @ X)
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One more example: beta reduction

l e t r e c be ta t =

match t w i t h

| nab X i n X −> X

| Abs r −> Abs (Y\ be ta ( r @ Y) )

| App (m, n ) −>
l e t m = be ta m i n

l e t n = be ta n i n

b e g i n match m w i t h

| Abs r −>
new X i n be ta ( s u b s t ( r @ X) X n )

| −> App (m, n )

end

; ;
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One more example: vacuosity more

l e t r e c vacp1 t = match t w i t h

| Abs (X\ X) −> f a l s e

| nab Y i n Abs (X\ Y) −> t r u e

| Abs (X\ App (m @ X, n @ X) ) −>
( vacp1 ( Abs m) ) && ( vacp1 ( Abs n ) )

| Abs (X\ ( Abs (Y\ ( r @ X Y ) ) ) ) −>
new Y i n vacp1 ( Abs (X\ ( r @ X Y ) ) )

| −> f a l s e ; ;
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One more example: vacuosity

l e t vacuous t = match t w i t h

| Abs (X\ s ) −> t r u e

| −> f a l s e ; ;

match t with Abs(X\s) ≡ ∃s.(λx .s) = t

(Recursion is hidden in the matching procedure)
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Pattern matching

We perform unification modulo α, β0 and η.

β0: (λx .B)y = B[y/x ] provided y is not free in λx .B (or

alternatively (λx .B)x = B

We give ourself the following restrictions:

• Pattern variables are applied to at most a list of distinct

variables.

• These variables are bound in the scope of pattern variables.

(In (r @ X Y) The scope of X and Y must be inside the

scope of r.)

This is called higher-order pattern unification or Lλ-unification

[Miller and Nadathur, 2012].

Such higher-order unification is decidable, unitary, and can be done

without typing.
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Some matching examples

a : i f : i → i g : i → i → i

(1) λxλy(f (H x)) λuλv(f (f u))

(2) λxλy(f (H x)) λuλv(f (f v))

(3) λxλy(g (H y x) (f (L x))) λuλv(g u (f u))

(4) λxλy(g (H x) (L x)) λuλv(g (g a u) (g u u))

(1) H 7→ λw(f w)

(2) match failure

(3) H 7→ λyλx .x L 7→ λx .x

(4) H 7→ λx .(g a x) L 7→ λx .(g x x)
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Translation

Our prototype interpreter is written in λProlog. The ocaml-style

concrete syntax is translated to a λProlog program which is then

evaluated by the interpreter.

l e t r e c s u b s t t x u =

match ( x , t ) w i t h

| nab X i n (X, X) −> u

| nab X Y i n (X, Y) −> Y

| ( x , App (m, n ) ) −> App ( s u b s t m x u , s u b s t n x u )

| ( x , Abs r ) −> Abs (Y\ s u b s t ( r @ Y) x u )

; ;
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Translation

prog ” s u b s t ” ( f i x p t s u b s t \ lam t \ lam x\ lam u\
match p a i r $ x $ t

[ nab x\ ( pr x x ==> u ) ,

nab x\ nab y\ ( pr x y ==> y ) ,

a l l x\ a l l m\ a l l n\ ( pr x ( App ( pr m n ) )

==> App $ ( p a i r $ ( s u b s t $ m $ x $ u )

$ ( s u b s t $ n $ x $ u ) ) ) ,

a l l x\ a l l ’ r \ ( pr x ( Abs r )

==> Abs ( y\ ( s u b s t $ ( r y ) $ x $ u ) ) )

] ) .

25



Natural semantics for MLTS

` val V
` V ⇓ V

` M ⇓ F ` N ⇓ U ` apply F U V

` M$N ⇓ V

` (R(fixpt R)) ⇓ V

` (fixpt R) ⇓ V

` C ⇓ tt ` L ⇓ V

` cond C L M ⇓ V

` C ⇓ ff ` M ⇓ V

` cond C L M ⇓ V

` M ⇓ U ` (R U) ⇓ V

` (let M R) ⇓ V

` ∇x .(E x) ⇓ V

` new E ⇓ V

` (R U) ⇓ V

` apply (lam R) U V

` pattern T Rule U ` U ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` (match T Rules) ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ∃x .pattern T (P x) U

` pattern T (all x\ P x) U

` [(λz1 . . . λzm.(t =⇒ s))D (T =⇒ U)]

` pattern T (nab z1 . . . nab zm.(t =⇒ s)) U
26



Nominal abstraction [Gacek et al., 2011]

Let:

• t be a term

• c1, . . . , cn be distinct nominal constants that may occur in t

• y1, . . . , yn be distinct variables not occurring in t

Such that yi and ci have the same type.

Then λc1 . . . λcn.t denotes the term λy1 . . . λyn.t
′ where t ′ is the

term obtained from t by replacing all ci by yi .

Definition

Let s and t be terms of types τ1 → · · · → τn → τ and τ for

n ≥ 0.

The expression s D t, a nominal abstraction of degree n, holds

just in the case that s λ-converts to λc1 . . . cn.t for some nominal

constants c1, . . . , cn.

Equality if nominal abstraction of degree 0 .

27
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Examples

The term on the left of the D operator serves as a pattern for

isolating occurrences of nominal constants.

Example

For example, if p is a binary constructor and c1 and c2 are

nominal constants:

λx .x D c1 λx .p x c2 D p c1 c2 λx .λy .p x y D p c1 c2

λx .x 6D p c1 c2 λx .p x c2 6D p c2 c1 λx .λy .p x y 6D p c1 c1

Nominal abstraction of degree (n) 0 is the same as equality

between terms based on λ-conversion.
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Illustrating the last rule

` λX .(X =⇒ s) D (Y =⇒ U)

` pattern Y (nab X in (X =⇒ s)) U ` U ⇓ V

` match Y with (nab X in (X =⇒ s)) ⇓ V

29



Nominals do not escape their scopes

Given the richness of the logic behind the natural semantics, we

can prove that nominals do not escape their scope.

` ∇x .(E x) ⇓ V

` new E ⇓ V

The universal quantifier ∀V is outside the scope of ∇x .

The λProlog implementation has a cost to make that guarantee:

every unification problem, in principle, needs to check for escaping

nominals.

Static checks will certainly need to be developed in order to ensure

that such checks are not always needed.
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Current implementation

The natural semantics is implemented in λProlog by extending an

interpreter from the 2012 book by Miller and Nadathur. Type

inference was easy to implement in λProlog.

The parser and transpiler from the concrete syntax to the λProlog

code in written in OCaml.

We provide a website for experimenting with MLTS using the Elpi

λProlog interpreter compiled to javascript thanks to js of ocaml:

https://voodoos.github.io/mlts
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Future work

• More complex examples

• Subject reduction, progress, etc.

• Statics checks such as pattern matching exhaustivity, use of

distinct pattern variables in pattern application etc.

• Make definitive choices about every remaining aspects of this

prototype (should we restrict @ to β0 reductions ? Should

constructors introduced by \ always be of zero arity ?)

• Design a real implementation. A compiler ? An extension to

OCaml ?
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Thank you
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Other vacuous

l e t vacp t =

match t w i t h

| Abs ( r ) −> new X i n

l e t r e c aux term =

match term w i t h

| X −> f a l s e

| nab Y i n Y −> t r u e

| App (m, n ) −> ( aux m) && ( aux n )

| Abs ( r ) −> new Y i n aux ( r @ X)

i n aux ( r @ X)

| −> f a l s e

; ;

back



λ-tree syntax

• The syntax is encoded as simply typed λ-terms. Syntactic

categories are mapped to simple types.

• Equality of syntax is equated to α, β0, η conversion. Often

restrictions are in place so that beta-zero will be complete for

beta.

• Bound variables never become free, instead, their binding

scope can move.
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