Kami:
Modular Verif cation of Digital Hardware in CoqQ

Adam Chlipala
MIT CSAIL
January 2018

Joint work with: Arvind, Thomas Bourgeat, Joonwon Choi, lan
Clester, Samuel Duchovni, Jamey Hicks, Muralidaran Vijayaraghavan,
Andrew Wright

A Cartoon View of Digital Hardware Design

Metaprogramming

rmal

1)
ormal

CAD tools Q
rma|Form;
@

Quite proprietary ma

Formal

o}

Simplification #1: Prove a Shallow Property

- . o

Thefgil ¥6iie
Behavioral refinement of

ndBYALANtS

or Boolean
equivalepce”
L 2
. effeck
L 2

-

=

Simplification #2: Analyze Isolated Components

The Kami way:
Modularly compose proofg
of pieces -”

Simplification #3: Start Over For Each Design

12

Y trees.

A framework o support implementing, specifying, formally
verifying, and compiling hardware designs

based on the Bluespec high-level hardware design language

bluespe

and the Coq proof assistant

Usual Industry Practice:

Register Transfer Language (RTL)

[Register
[Register

Gate

Gate

Differences from Conventional Software

* All state elements must be finite.

* Instead of loops & recursion, single clock cycles.

* AImost unlimited opportunity for parallelism within one clock
cycle!

* However, one long dataflow dependency chain in one part of a
design can slow down the clock for everyone.
* S0 we often break operations into multiple cycles.

The Great Annoyance of Timing Dependency

outputs

cycle #2

cycle #1

cycle #1 cycle #2 cycle #3

cycle #4

The Big Ideas (from Bluespec)

Program modules are objects
with mutable private state,
accessed via methods.

10

The Big ldeas Recv (1),

Send h(2)

-
S

Recv g(7),
Send k(13)

Refines

Every method call appears to execute atomically.
Any step Is summarized by a trace of calls.
Obiject ref nement is inclusion of possible traces.

11

The Big ldeas

Composing objects hides internal method calls.

12

Bluespec gives

AA
Rules @ programmers the illusion

that we repeatedly pick

arule
(nondeterministically)

Example rule: and run it atomically.

- Read memory at PC.

- Check that it's an add instr.
- Load from source registers.
- Perform addition.

- Write to destination register.

— o~ Parallelism is essential
. /for performance.

— ...so compiler extracts it

~A automatically, via static
./ analysis.

Actually, objects also include rules, atomic state transitions that fire on their
own.

They wind up looking sort of like operational semantics rules.

13

Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
Read i1isEmpty <- “empty;
Assert !#1sEmpty;
Read eltT <- "elt;
Read engPT <- "engP;
Read degPT <- ~degP;
Write "full <- $$false;
LET next degP <- (#deqgPT + $1) :: Bit sz;
Write "“empty <- (#engPT == #next degP);
Write ~degP <- #next degP;
Ret #eltTW[#degPT].

An Example Kami Proof (pipelined processor)

Lemma pé4st refines p3st: pdst <<== p3st.
Prootf.
kmodular.

Qed.

kdisj edms cms ex O.

kdisj ecms dms ex O.

apply fetchDecode refines fetchNDecode; auto.
krefl.

Uses standard Coq ASCII syntax for mathematical proofs.
These proofs are checked automatically, just like type checking.
We inherit streamlined IDE support for Coq.

15

We Are BUIIdIng Coq tactics to prove

refinements

Refines

Compiler

Verify semantics
preservation of
compiler

16

Some Useful Refinement Tactics

Monolithic Spec

I @ Decompose

Getting Real

Decoupled Spec

@ Replace Module

@ Induction

/Simulation

17

sort of smells like Coq simpl

Decompose <« Merge & Inline

f(x)
h(x)

a(y)

—>->
O

Replace Module « Congruence

M<M

‘sort of smells like Coq rewrite

N <N

M+N < M'+N'

Joins other classic theorems of process calculus:

M <

MI MI S Mll

M < M"

19

sort of smells like Coq induction

Direct Simulation

Choose this relation per proof.

Impl. Spec.

v

NS

same
labels

=

U

Code walk-through:
simple producer-consumer system

Twist #1: Mixing Specs & Impls

_ Must write as Bluespec-style HW design

* Replace
- Must write as Bluespec-style HW design

- Want to write as a normal functional program

@ Decompose

22

Review: Parametric Higher-Order Abs. Syntax

(PHOAS)

Inductive ty ;=
| Bitvector (n : nat)
| Tuple (ts : list ty).

Section var.

Variable var : ty —» Set.

Inductive exp : ty - Set :=

| Bits : forall n, bitvector n
— exp (Bitvector n)

| Let : forall t1 12,
exp t1 - (var t1 - exp t2)
— exp t2

| Var : forall t, vart - exp t

End var.

Definition Exp t := V var, exp var t.

23

Review: Parametric Higher-Order Abs. Syntax

(PHOAS)

Fixpoint tyD (t : ty) : Set := match t with
| Bitvector n => bitvector n
| Tuple ts => tuple (map tyD ts)
end.

FixpointexpD t (e : exprtyDt):tyD t:=
match e with
| Bits bv => bv
} Let e1 e2 => expD (e2 (expD e1))
| Var x => x

end.

Definition ExpD t (E : Exp t) := expD (E _).

Section var.
Variable var : ty —» Set.

Inductive exp : ty —» Set :
| Bits : forall n, bitvector n
— exp (Bitvector n)
| Let : forall t1 12,
exp t1 - (var t1 - exp t2)
— exp t2
| Var : forall t, vart - exp t

End var.

Definition Exp t := V var, exp var t.

24

Mixing It Up: Allowing Native Coq Code

Inductive ty :=
| Bitvector (n : nat)
| Tuple (ts : list ty).

Inductive ty' :=
| Syntactic (t : ty)
| Semantic (T : Set).

Definition ty'D (t: ty') : Set .=
match t with
| Syntactic t => tyD t
| Semantic T =>T
end.

Section var.
Variable var : ty —» Set.

rDefinition var' (t: ty') : Set ;= match t with
| Syntactic t => var t
| Semantic T=>T
end.

\Inductive exp : ty' - Set :=
| Bits : forall n, bitvector n
— exp (Syntactic (Bitvector n))
| Let : forall t1 t2,
exp t1 - (var' t1 - exp t2) - exp t2
| Var : forall t, var' t - exp ||
End var. "

25

Twist #2: Parametric and Repeated Designs

VcacheSize. Procedsor(cacheSi)

VcacheSize, n. [Processor(

Handy Proof Rules

RISC-V: An Open Instruction Set P RISC

Platinum Members

&) |4z Berkeley Architecture Research bluespec Bluespec o SKy - CGSKY
' FOUNDING PLATINUM FOUNDING PLATINUM PLATINUM

cortus Cortus Go gle Google scron Micron Technology
FOUNDING PLATINUM FOUNDING PLATINUM PLATINUM

CMerosemd Microsemi @ NVIDIA W NXP
FOUNDING PLATINUM : FOUNDING PLATINUM PLATINUM

NVIDIA.

QUuALCOAMMW Qualcomm Jartes Rambus Inc. SAMSUNG Samsung
FOUNDING PLATINUM FOUNDING PLATINUM PLATINUM

*"1-,; - Sanechips Technology Co. @ SiFive SiFive Western Digital Western Digital

PLATINUM

FOUNDING PLATINUM

FOUNDING PLATINUM

28

Official Formal Semantics for RISC-V
“the

semantics” - -

29

Sample Code for Semantics WIP

Decoding machine instructions

decode sub opcode
| opcode==opcode LOAD, funct3==funct3 LB
= ILb {rd=rd, rsl=rsl, oimml2=oimml?2}
| opcode==opcode LOAD, funct3==funct3 LH
= Lh {rd=rd, rsl=rsl, oimmlZ2=oimmlZ2}

Executing decoded instructions

execute (Lwu rd rsl oimml2?2) = do
a <- getRegister rsl
X <- loadWord (a + fromIntegral oimmlZ2)
setRegister rd (unsigned Xx)
execute (Addw rd rsl rs?2) = do
x <- getRegister rsl
y <- getRegister rsZ
setRegister rd (s32 (x + v))

30

An Open Library of Formally Verified Components

 Microcontroller-class RV32| (multicore; U)
 Desktop-class RV64IMA (multicore; U,S,M)
 Cache-coherent memory system

Reuse our proofs when composing our components
with your own formally verified accelerators!

31

The Promise of this Approach

32

The Trusted Computing Base

Where can defects go uncaught?

g Coq proof checker (small & general-purpose)
RTL formal semantics

g Application specification
D ISA formal semantics

Hardware design (Bluespec, RTL, ...)
D Software implementation (C, ...)

U

33

Shameless plug!

Part of a larger project:
The Science of Deep Specif cation

A National Science Foundation
Expedition in Computing

https://deepspec.orqg/

Join our mailing list for updates on our 2018 summer school:

hands-on training with these tools!

34

In Summary...

* With the right tool support, digital-hardware development is just
another kind of programming.

* Functional programming & Coq are a great match for this domain.

* The rough edges that still exist are just the kind that the ICFP
crowd enjoy smoothing!

* The chance to tinker with the HW layers is freeing — ask me later
about getting rid of weak memory models. :)

35

https://github.com/mit-plv/kami

https://github.com/mit-plv/kami

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

