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A Cartoon View of Digital Hardware Design
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Simplification #1: Prove a Shallow Property
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Simplification #2: Analyze Isolated Components

The Kami way:
Modularly compose proofg
of pieces -”




Simplification #3: Start Over For Each Design
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A framework o support implementing, specifying, formally
verifying, and compiling hardware designs

based on the Bluespec high-level hardware design language

bluespe

and the Coq proof assistant



Usual Industry Practice:

Register Transfer Language (RTL)
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Differences from Conventional Software

* All state elements must be finite.

* Instead of loops & recursion, single clock cycles.

* AImost unlimited opportunity for parallelism within one clock
cycle!

* However, one long dataflow dependency chain in one part of a
design can slow down the clock for everyone.
* S0 we often break operations into multiple cycles.



The Great Annoyance of Timing Dependency
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The Big Ideas (from Bluespec)

Program modules are objects
with mutable private state,
accessed via methods.
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The Big ldeas Recv (1),

Send h(2)

-
S

Recv g(7),
Send k(13)

Refines

Every method call appears to execute atomically.
Any step Is summarized by a trace of calls.
Obiject ref nement is inclusion of possible traces.
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The Big ldeas

Composing objects hides internal method calls.

12



Bluespec gives

AA
Rules @ programmers the illusion

that we repeatedly pick

arule
(nondeterministically)

Example rule: and run it atomically.

- Read memory at PC.

- Check that it's an add instr.
- Load from source registers.
- Perform addition.

- Write to destination register.

— o~ Parallelism is essential
. /for performance.

— ...so compiler extracts it

~A automatically, via static
./ analysis.

Actually, objects also include rules, atomic state transitions that fire on their
own.

They wind up looking sort of like operational semantics rules.
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Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
Read i1isEmpty <- “empty;
Assert !#1sEmpty;
Read eltT <- "elt;
Read engPT <- "engP;
Read degPT <- ~degP;
Write "full <- $$false;
LET next degP <- (#deqgPT + $1) :: Bit sz;
Write "“empty <- (#engPT == #next degP);
Write ~degP <- #next degP;
Ret #eltTW[#degPT].



An Example Kami Proof (pipelined processor)

Lemma pé4st refines p3st: pdst <<== p3st.
Prootf.
kmodular.

Qed.

kdisj edms cms ex O.

kdisj ecms dms ex O.

apply fetchDecode refines fetchNDecode; auto.
krefl.

Uses standard Coq ASCII syntax for mathematical proofs.
These proofs are checked automatically, just like type checking.
We inherit streamlined IDE support for Coq.
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We Are BUIIdIng Coq tactics to prove

refinements

Refines

Compiler

Verify semantics
preservation of
compiler
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Some Useful Refinement Tactics

Monolithic Spec

I @ Decompose

Getting Real

Decoupled Spec

@ Replace Module

@ Induction

/Simulation
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sort of smells like Coq simpl

Decompose <« Merge & Inline

f(x)
h(x)

a(y)

—>->
O




Replace Module « Congruence

M<M

‘sort of smells like Coq rewrite

N <N

M+N < M'+N'

Joins other classic theorems of process calculus:

M <

MI MI S Mll

M < M"
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sort of smells like Coq induction

Direct Simulation

Choose this relation per proof.

Impl. Spec.

v

NS

same
labels

=

U




Code walk-through:
simple producer-consumer system



Twist #1: Mixing Specs & Impls

_ Must write as Bluespec-style HW design

* Replace
- Must write as Bluespec-style HW design

- Want to write as a normal functional program

@ Decompose
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Review: Parametric Higher-Order Abs. Syntax

(PHOAS)

Inductive ty ;=
| Bitvector (n : nat)
| Tuple (ts : list ty).

Section var.

Variable var : ty —» Set.

Inductive exp : ty - Set :=

| Bits : forall n, bitvector n
— exp (Bitvector n)

| Let : forall t1 12,
exp t1 - (var t1 - exp t2)
— exp t2

| Var : forall t, vart - exp t

End var.

Definition Exp t := V var, exp var t.
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Review: Parametric Higher-Order Abs. Syntax

(PHOAS)

Fixpoint tyD (t : ty) : Set := match t with
| Bitvector n => bitvector n
| Tuple ts => tuple (map tyD ts)
end.

FixpointexpD t (e : exprtyDt):tyD t:=
match e with
| Bits bv => bv
} Let e1 e2 => expD (e2 (expD e1))
| Var x => x

end.

Definition ExpD t (E : Exp t) := expD (E _).

Section var.
Variable var : ty —» Set.

Inductive exp : ty —» Set :
| Bits : forall n, bitvector n
— exp (Bitvector n)
| Let : forall t1 12,
exp t1 - (var t1 - exp t2)
— exp t2
| Var : forall t, vart - exp t

End var.

Definition Exp t := V var, exp var t.
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Mixing It Up: Allowing Native Coq Code

Inductive ty :=
| Bitvector (n : nat)
| Tuple (ts : list ty).

Inductive ty' :=
| Syntactic (t : ty)
| Semantic (T : Set).

Definition ty'D (t: ty') : Set .=
match t with
| Syntactic t => tyD t
| Semantic T =>T
end.

Section var.
Variable var : ty —» Set.

rDefinition var' (t: ty') : Set ;= match t with
| Syntactic t => var t
| Semantic T=>T
end.

\Inductive exp : ty' - Set :=
| Bits : forall n, bitvector n
— exp (Syntactic (Bitvector n))
| Let : forall t1 t2,
exp t1 - (var' t1 - exp t2) - exp t2
| Var : forall t, var' t - exp ||
End var. "
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Twist #2: Parametric and Repeated Designs

VcacheSize. Procedsor(cacheSi)

VcacheSize, n. [Processor(




Handy Proof Rules




RISC-V: An Open Instruction Set P RISC
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Official Formal Semantics for RISC-V
“the

semantics” - -
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Sample Code for Semantics WIP

Decoding machine instructions

decode sub opcode
| opcode==opcode LOAD, funct3==funct3 LB
= ILb {rd=rd, rsl=rsl, oimml2=oimml?2}
| opcode==opcode LOAD, funct3==funct3 LH
= Lh {rd=rd, rsl=rsl, oimmlZ2=oimmlZ2}

Executing decoded instructions

execute (Lwu rd rsl oimml2?2) = do
a <- getRegister rsl
X <- loadWord (a + fromIntegral oimmlZ2)
setRegister rd (unsigned Xx)
execute (Addw rd rsl rs?2) = do
x <- getRegister rsl
y <- getRegister rsZ
setRegister rd (s32 (x + v))
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An Open Library of Formally Verified Components

 Microcontroller-class RV32| (multicore; U)
 Desktop-class RV64IMA (multicore; U,S,M)
 Cache-coherent memory system

Reuse our proofs when composing our components
with your own formally verified accelerators!

31



The Promise of this Approach
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The Trusted Computing Base

Where can defects go uncaught?

g Coq proof checker (small & general-purpose)
RTL formal semantics

g Application specification
D ISA formal semantics

Hardware design (Bluespec, RTL, ...)
D Software implementation (C, ...)

U
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Shameless plug!

Part of a larger project:
The Science of Deep Specif cation

A National Science Foundation
Expedition in Computing

https://deepspec.orqg/

Join our mailing list for updates on our 2018 summer school:

hands-on training with these tools!
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In Summary...

* With the right tool support, digital-hardware development is just
another kind of programming.

* Functional programming & Coq are a great match for this domain.

* The rough edges that still exist are just the kind that the ICFP
crowd enjoy smoothing!

* The chance to tinker with the HW layers is freeing — ask me later
about getting rid of weak memory models. :)
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https://github.com/mit-plv/kami


https://github.com/mit-plv/kami
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