
Hybrid Information Flow Analysis
for Real-World C Code

joint work with Julien Signoles, submitted to POST 2017

Inria, November 14, 2016 | Gergö Barany gergo.barany@cea.fr

Information �ow analysis 1/2

Information �ow analysis

pieces of data tagged with labels

public/secret
provenance (Internet domain, software component, . . .)

analysis propagates labels to all a�ected data/computations

Flow policies de�ne how information may �ow

Examples:

personal data may not �ow to send(1) syscall

cryptographic keys may not a�ect branch conditions

packet routing may only depend on packet header, not payload

CEA | November 14, 2016 | p. 2

Information �ow analysis 2/2

Information �ow lattice
Labels form �nite lattice 〈S ,t,v,⊥〉

example: S = {L,H} where L (public) @ H (private)

example: software components S = P({C1, . . . ,Cn})

Non-interference property

`secret inputs do not a�ect public outputs'

enforced by our analysis (for user-de�ned labels and policy)

CEA | November 14, 2016 | p. 3

Hybrid analysis with Frama-C

Analysis implemented in Frama-C

Source-based analysis and transformation framework for C99

Provides annotation language ACSL

Analysis implemented as hybrid (static/dynamic) analysis

Instrument code with information �ow tracking

Instrumentation depends on previous static analysis
(Frama-C's Value)

Transformed code:

can be executed (dynamic analysis)
can be analyzed statically

CEA | November 14, 2016 | p. 4

Analysis example

program transformation, annotations to express �ow policy

a label variable for each variable x, label updates

extern unsigned int /*@ private */ secret;

extern unsigned int /*@ public */ public;

char secret_status = 1, public_status = 0;

int main(void) {

int result;

result = public + secret;

result_status = public_status | secret_status;

/*@ assert security_status(result) == public; */

/*@ assert result_status == 0; */ E
return result;

}

CEA | November 14, 2016 | p. 5

Challenges for dynamic analysis for C

Our hybrid analysis supports most of C

pointers to scalars, structured control �ow (earlier work)

arrays, pointer arithmetic

struct

semi-structured control �ow: break, continue

many forms of goto (manual or inserted by front-end)

interprocedural �ow, (some) indirect function calls

dynamic memory allocation

Unsolved problems: pointer type casts, union types

Formalization of parts of the theory in Isabelle/HOL: in progress

CEA | November 14, 2016 | p. 6

Hybrid analysis: basics (earlier work)

Structured branches
Make control dependences explicit using program counter labels

if_pc = pc | cond;

if (cond) {

x = a;

x = a;| if_pc;

y |= if_pc;

} else {

y = b;

y = b;| if_pc;

x |= if_pc;

}

while_pc = pc | cond;

while (cond) {

x = a;

x = a | while_pc;

}

x |= while_pc;

CEA | November 14, 2016 | p. 7

Pointer-based �ow (earlier work)

Pointer-based �ow
For pointer p, need label variables p and p_target

Invariant: p 7→ v ⇔ p_target 7→ v

p = z; / assume p 7→ {x, y} */

*p_target = z;

x |= p; /* propagate p to all possible targets */

y |= p;

Possible pointer targets found by static analysis

In general, need n + 1 label variables for pointer type T *(n): p,
p_target1, . . . , p_targetn

CEA | November 14, 2016 | p. 8

Information �ow analysis for arrays

Problem

arr[] = { 0, 0, ..., 0 };

arr[secret] = 1;

y = arr[0];

Have y = 1⇔ secret = 0, so 1 bit leaked from secret to y

Solution
Summary label captures all �ows into the array monotonically

arr[secret] = 1;

arr_summary |= secret; /* weak update */

y = arr[0];

y = arr_summary; /* field-insensitive read */

CEA | November 14, 2016 | p. 9

Interaction of arrays and pointers

New invariant for arrays of pointers

if p 7→n arr[i], we need:

p_summaryn 7→n arr_summary

pn 7→n arr[i]

Two status pointers per dereference level

for int *b[10]:

char b_status; /* array summary */

char b_status_d0[10]; /* statuses of array elems */

char *b_status_d1_summary[10]; /* pointers to summaries */

char *b_status_d1[10]; /* ptrs to exact target statuses */

G. Barany. Hybrid Information Flow Analysis for Programs with Arrays. VPT 2016,

Electronic Proceedings in Theoretical Computer Science 216, pp. 5�23.

CEA | November 14, 2016 | p. 10

Semi-structured control �ow

loop_pc = cond | pc;

while (cond) {

x = x + 1;

x = x | loop_pc;

if_pc = secret | loop_pc;

loop_pc |= if_pc;

if (secret) break;

y = y + 1;

y = y | loop_pc;

}

x |= loop_pc;

y |= loop_pc;

Loop is control dependent on the if that controls the break

CEA | November 14, 2016 | p. 11

goto statement considered di�cult (1/2)

goto

may be written by humans:

if (error) goto end;

may be introduced by Frama-C frontend for logical operations,
early return, continue in for loops:

if (a && b) { c; } else { d; }

becomes:
if (a) {

if (b) { c; }

else goto _LAND;

} else { _LAND: d; }

Control-dependent side e�ects must be treated correctly

CEA | November 14, 2016 | p. 12

goto statement considered di�cult (2/2)

x = 1;

if_pc = secret | pc;

pc |= if_pc;

if (secret) goto end;

x = 0;

end:

x |= pc;

/* x == 0 <==> secret == 0 */

return x;

Supported cases

forward jump out of a block (like generalized break)

jump within a branching statement (for logical ||, &&)

CEA | November 14, 2016 | p. 13

Interprocedural information �ow (1/2)

Transform function parameters and return value (and every call)

char add_return;

float add(float x, float y) {

float add(char local_pc, float x, char x, float y, char y)

{

float sum;

char sum;

sum = x + y;

sum = local_pc | y | x;

add_return = sum;

return sum;

}

Calls through function pointers allowed if Value can resolve them

CEA | November 14, 2016 | p. 14

Interprocedural information �ow (2/2)

Cannot transform external (library) functions

Require annotations in Frama-C's ACSL annotation language:

/*@ assigns \result \from x, y; */

float add(float x, float y);

Appropriate label updates are generated at the call site:

sum = add(x, y);

sum = x | y | pc;

Not always possible: Cannot handle pointers in assigns clauses
(cannot ensure invariants)

CEA | November 14, 2016 | p. 15

Dynamic memory allocation

To preserve array/pointer invariants, dynamically allocate labels for
dynamically allocated data

p = malloc(...);

p_d1 = calloc(...);

p_d1_summary = &dynalloc_site_1_summary;

if (...) {

*p = 1;

*p_d1 = 0 | if_pc;

} else {

dynalloc_site_1_summary |= if_pc;

}

Problem: summary labels must have names
Each allocation site has a shared summary, imprecise.
TODO: context-sensitive allocation summaries

CEA | November 14, 2016 | p. 16

Static Pre-analysis

Reduce instrumentation code to variables involved in �ow policy:

collect variables x in �ow policy annotations like
/*@ assert security_status(x) == public; */

propagate backward, left-to-right in assignments

in assignment x = exp, monitor all vars of exp if x monitored

result: overapproximation of variables on which policy
annotations depend

need not monitor others

CEA | November 14, 2016 | p. 17

Evaluation

Evaluation on LibTomCrypt crypto library

Flow policy: all branch conditions have public labels

insert /*@ assert security_status(condition) == public; */
before each branch
avoid timing attacks based on control �ow based on secret key

symmetric cryptosystems (AES etc.):

static analysis: �ow policy veri�ed
dynamic analysis: ∼ 2× slowdown, +60% memory used

elliptic curve cryptography:

static analysis: proved known vulnerability
dynamic analysis: 6.5× slowdown, +10% memory used
even �timing attack resistant� variant is vulnerable

CEA | November 14, 2016 | p. 18

Summary

hybrid information �ow analysis handling almost all of C

implementation in Frama-C

practical evaluation: usable on real-world crypto software

Thank you for your attention!

This work was supported by the French National Research Agency (ANR), project AnaStaSec,

ANR-14-CE28-0014.

CEA | November 14, 2016 | p. 19

