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Computers are insecure 

• devastating low-level vulnerabilities 

• programming languages, compilers, 

and hardware architectures 

– designed in an era of scarce hardware resources 

– too often trade off security for efficiency 

• the world has changed (2016 vs 1972*) 

– security matters, hardware resources abundant 

– time to revisit some tradeoffs 
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* “...the number of UNIX installations has grown to 10, with more expected...” 
-- Dennis Ritchie and Ken Thompson, June 1972 
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“Spending silicon to     
improve security” 
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vulnerable since May 2008 

DNS queries 
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Safer high-level languages 

 

• memory safe (at a cost) 

• useful abstractions for writing secure code: 

– GC, type abstraction, modules, immutability, ... 

• not immune to low-level attacks 

– large runtime systems, in C++ for efficiency 

– unsafe interoperability with low-level code 

• libraries often have large parts written in C/C++ 

• enforcing abstractions all the way down too expensive 
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Summary of the problem 

• 1. inherently insecure low-level languages 

– memory unsafe: any buffer overflow can be catastrophic 

           allowing remote attackers to gain complete control 
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Summary of the problem 

• 1. inherently insecure low-level languages 

– memory unsafe: any buffer overflow can be catastrophic 

           allowing remote attackers to gain complete control 

• 2. unsafe interoperability with lower-level code 

– even code written in safer high-level languages 

has to interoperate with insecure low-level libraries 

– unsafe interoperability: all high-level safety guarantees lost 

• Today’s languages & compilers plagued by low-level attacks 

– main culprit: hardware provides no appropriate security mechanisms 

– fixing this purely in software would be way too inefficient 

8 
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pc tpc 

r0 tr0 

r1 tr1 

mem[0] tm0 

“store r0 r1” tm1 

mem[2] tm2 

mem[3] tm3 

tpc tr0 tr1 tm3 tm1 

monitor 

store 

software-defined, hardware-accelerated, tag-based monitoring 

disallow 
policy violation stopped! 

(e.g. out of bounds write) 

tm3 ≠ 
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• low level + fine grained: unbounded per-word 
metadata, checked & propagated on each 
instruction 
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• flexible: tags and monitor defined by software 

• efficient: software decisions hardware cached 

• expressive: complex policies for secure compilation 

• secure and simple enough to verify security in Coq 

• real: FPGA implementation on top of RISC-V 
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(in Coq) 

[Oakland’15] 
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• information flow control (IFC) 

• monitor self-protection 

• protected compartments 

• dynamic sealing 

• heap memory safety 

• code-data separation 

• control-flow integrity (CFI) 

• taint tracking 

     

 

Expressiveness 

Verified 
(in Coq) 

Evaluated  
(<10% runtime overhead) 

[Oakland’15] 

 [POPL’14] 

[ASPLOS’15] 



SECOMP grand challenge 
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1. Provide secure semantics for low-level languages 

– C with protected components and memory safety 

2. Enforce secure interoperability with lower-level code 

– ASM, C, and F* [F* = ML + verification] 
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Protecting component boundaries 

• Add mutually distrustful components to C 

– interacting only via strictly enforced interfaces 

• CompSec compiler chain (based on CompCert) 

– propagate interface information to produced binary 

• Micro-policy simultaneously enforcing 

– component separation 

– type-safe procedure call and return discipline 

• Interesting attacker model 

– extending full abs. to mutual distrust + unsafe source 
16 Recent preliminary work, joint with Yannis Juglaret et al 
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[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015] 



ra 

Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

pc ... 
@(n+1) 

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015] 



ra 

Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

pc ... 
@(n+1) 

linear return capability 

changed color 

increment 

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015] 



Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

pc ra rm 
@(n+1) 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability 

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015] 



Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

pc ra rm 
@(n+1) 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability 

loads and stores to the same 
component always allowed 



Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability @Ret n 

pc ra rm 
@(n+1) 



Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability @Ret n 

pc ra rm 
@(n+1) 

invariant: 
at most one 
return capability 
per call stack level 



Compartmentalization micro-policy 

17 

Jal r 

...@EntryPoint 

... 

... 

... 

Load ⋆rm → ra 

Jump  ra 

memory 

C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability @Ret n 

invariant: 
at most one 
return capability 
per call stack level 

pc ra rm 
@(n+1) 



Compartmentalization micro-policy 

17 

Jal r 
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... 

Load ⋆rm → ra 

Jump  ra 
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C1 

C2 

@Ret n 

registers 

Store ra → ⋆rm 

linear return capability @Ret n 

invariant: 
at most one 
return capability 
per call stack level 

pc ra rm 
@(n+1) 

cross-component 
return only allowed 
via return capability 
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i1 i2 i3 i4 i5 

D1 A2 D3 A4 A5 

∀ low-level attack from compromised C2↓, C4↓, C5↓ 

∃ high-level attack from some fully defined A2, A4, A5 

≁ L 

≁ H 

↯ ↯ ↯ ↯ ↯ ↯ 

∀compromise scenarios. 

follows from “structured full abstraction 
                                   for unsafe languages” + “separate compilation” 
 

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16] 
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• ML abstractions we want to enforce with micro-policies 

– types, value immutability, opaqueness of closures, 
parametricity (dynamic sealing), GC vs malloc/free, ... 

• F*: enforcing full specifications using micro-policies 

– some can be turned into contracts, checked dynamically 

– fully abstract compilation of F* to ML trivial for ML interfaces 

(because F* allows and tracks effects, as opposed to Coq) 

• Limits of purely-dynamic enforcement 

– functional purity, termination, relational reasoning 

– push these limits further and combine with static analysis 
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SECOMP focused on dynamic enforcement 
but static analysis could help too 

• Improving efficiency 
– removing spurious checks 

– just that by using micro-policies our 
compilers add few explicit checks 

– e.g. turn off memory safety checking for a statically memory 
safe component that never sends or receives pointers 

• Improving transparency 
– allowing more safe behaviors 

– e.g. we could statically detect which copy of the 
linear return capability the code will use to return 
(in this case static analysis untrusted) 
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Micro-policies: 
remaining fundamental challenges 
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Micro-policies: 
remaining fundamental challenges 

• Micro-policies for C and ML 

– needed for vertical compiler composition 

– will put micro-policies in the hands of programmers 

• Secure micro-policy composition 

– micro-policies are interferent reference monitors 

– one micro-policy’s behavior can break another’s guarantees 

• e.g. composing anything with IFC can leak 

21 
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Beyond full abstraction 

• Is full abstraction always the right notion of secure 
compilation? The right attacker model? 

• Similar properties 

– secure compartmentalizing compilation (SCC) 

– preservation of hyper-safety properties [Garg et al.] 

• Strictly weaker properties (easier to enforce!): 

– robust compilation (integrity but no confidentiality) 

• Orthogonal properties: 

– memory safety (enforcing CompCert memory model) 

22 



What secure compilation adds over 
compositional compiler correctness 

• mapping back arbitrary low-level contexts 

• preserving integrity properties 

– robust compilation phrased in terms of this 

• preserving confidentiality properties 

– full abstraction and preservation of 
hyper-safety phrased in terms of this 

• stronger notion of components and interfaces 

– secure compartmentalizing compilation adds this 

23 



 Verification and testing 

• So far all secure compilation work on paper 

– but one can’t verify an interesting compiler on paper 
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 Verification and testing 

• So far all secure compilation work on paper 

– but one can’t verify an interesting compiler on paper 

• SECOMP will use proof assistants: Coq and F* 

• Reduce effort 

– better automation (e.g. based on SMT like in F*) 

– integrate testing and proving (QuickChick and Luck) 

• Problems not just with effort/scale 

– devising good proof techniques for full abstraction 
is a hot research topic of it’s own 

 
24 



SECOMP in a nutshell 

• We need more secure languages, compilers, hardware 
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SECOMP in a nutshell 

• We need more secure languages, compilers, hardware 

• Key enabler: micro-policies (software-hardware protection) 

• Grand challenge: the first efficient formally secure compilers 

                  for realistic programming languages (C, ML, F*) 

• Answering challenging fundamental questions 

– attacker models, proof techniques 

– secure composition, micro-policies for C and ML 

• Achieving strong security properties like full abstraction 

+ testing and proving formally that this is the case 

• Measuring & lowering the cost of secure compilation 

• Most of this is vaporware at this point but ...  

– building a community, looking for collaborators, and hiring 

... in order to try to make some of this real 25 



• Looking for excellent interns, PhD students, 
PostDocs, starting researchers, and engineers 

• Prosecco can also support outstanding 
candidates in the CR2 competition 

26 
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Collaborators & Community 
• Current collaborators from Micro-Policies project 

– UPenn, MIT, Portland State, Draper Labs 

• Looking for additional collaborators 

– Several other researchers working on secure compilation 

• Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven), 

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR) 

– Amal Ahmed coming to Paris for 1 year sabbatical (from 09/2017) 

• Secure compilation meetings (very informal) 

– 1st at INRIA Paris on August 2016 

– 2nd in Paris on 15(?) January 2017 ... maybe at UPMC 

– build larger research community, identify open problems, 

bring together communities (hardware, systems, security, 

                                                      languages, verification, ...) 



Questions for Gallium 

• What do you think? Is this plan outrageous? 

 

• Would CompCert be a good base for some of this? 

 

• Is there any plan for a RISC-V backend for CompCert? 

 

• Is anyone from Gallium interested in working on 
secure compilation? 
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