
SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

Prosecco team

1

SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

Prosecco team

1

5 year vision

SECOMP
 Efficient Formally Secure Compilers

to a Tagged Architecture

Cătălin Hrițcu

Prosecco team

1

5 year vision new grant

Computers are insecure

• devastating low-level vulnerabilities

2

Computers are insecure

• devastating low-level vulnerabilities

• programming languages, compilers,

and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

2

Computers are insecure

• devastating low-level vulnerabilities

• programming languages, compilers,

and hardware architectures

– designed in an era of scarce hardware resources

– too often trade off security for efficiency

• the world has changed (2016 vs 1972*)

– security matters, hardware resources abundant

– time to revisit some tradeoffs

2

* “...the number of UNIX installations has grown to 10, with more expected...”
-- Dennis Ritchie and Ken Thompson, June 1972

Hardware architectures

• Today’s processors are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

3

Hardware architectures

• Today’s processors are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

3

Hardware architectures

• Today’s processors are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

• Manufacturers have started looking for solutions
– 2015: Intel Memory Protection Extensions (MPX)

 and Intel Software Guard Extensions (SGX)

– 2016: Oracle Silicon Secured Memory (SSM)

3

Hardware architectures

• Today’s processors are mindless bureaucrats

– “write past the end of this buffer” ... yes boss!

– “jump to this untrusted integer” ... right boss!

– “return into the middle of this instruction” ... sure boss!

• Software bears most of the burden for security

• Manufacturers have started looking for solutions
– 2015: Intel Memory Protection Extensions (MPX)

 and Intel Software Guard Extensions (SGX)

– 2016: Oracle Silicon Secured Memory (SSM)

3

“Spending silicon to
improve security”

Unsafe low-level languages

• C (1972) and C++ undefined behavior
– including buffer overflows, checks too expensive

– compilers optimize aggressively assuming
undefined behavior will simply not happen

4

Unsafe low-level languages

• C (1972) and C++ undefined behavior
– including buffer overflows, checks too expensive

– compilers optimize aggressively assuming
undefined behavior will simply not happen

• Programmers bear the burden for security
– just write secure code ... all of it

4

Unsafe low-level languages

• C (1972) and C++ undefined behavior
– including buffer overflows, checks too expensive

– compilers optimize aggressively assuming
undefined behavior will simply not happen

• Programmers bear the burden for security
– just write secure code ... all of it

4

Unsafe low-level languages

• C (1972) and C++ undefined behavior
– including buffer overflows, checks too expensive

– compilers optimize aggressively assuming
undefined behavior will simply not happen

• Programmers bear the burden for security
– just write secure code ... all of it

4

vulnerable since May 2008

DNS queries

Safer high-level languages

• memory safe (at a cost)

5

F#

Safer high-level languages

• memory safe (at a cost)

• useful abstractions for writing secure code:

– GC, type abstraction, modules, immutability, ...

5

F#

Safer high-level languages

• memory safe (at a cost)

• useful abstractions for writing secure code:

– GC, type abstraction, modules, immutability, ...

• not immune to low-level attacks

– large runtime systems, in C++ for efficiency

– unsafe interoperability with low-level code

• libraries often have large parts written in C/C++

• enforcing abstractions all the way down too expensive

5

F#

6

7

Summary of the problem

• 1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete control

8

Summary of the problem

• 1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages

has to interoperate with insecure low-level libraries

– unsafe interoperability: all high-level safety guarantees lost

8

Summary of the problem

• 1. inherently insecure low-level languages

– memory unsafe: any buffer overflow can be catastrophic

 allowing remote attackers to gain complete control

• 2. unsafe interoperability with lower-level code

– even code written in safer high-level languages

has to interoperate with insecure low-level libraries

– unsafe interoperability: all high-level safety guarantees lost

• Today’s languages & compilers plagued by low-level attacks

– main culprit: hardware provides no appropriate security mechanisms

– fixing this purely in software would be way too inefficient

8

Key enabler: Micro-Policies

9

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc

r0

r1

mem[0]

“store r0 r1”

mem[2]

mem[3]

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc

tr0

tr1

tm1

software-defined, hardware-accelerated, tag-based monitoring

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

tpc’ tm3’

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software-defined, hardware-accelerated, tag-based monitoring

=

tpc’ tm3’

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’

tm3’

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

=

Key enabler: Micro-Policies

9

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor

store

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3 ≠

tm3

=

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each
instruction

10

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

10

Micro-policies are cool!

• low level + fine grained: unbounded per-word
metadata, checked & propagated on each instruction

• flexible: tags and monitor defined by software

• efficient: software decisions hardware cached

• expressive: complex policies for secure compilation

• secure and simple enough to verify security in Coq

• real: FPGA implementation on top of RISC-V

10

Micro-policies are cool!

• information flow control (IFC)

Expressiveness

11

 [POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

11

 [POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

• ...

Expressiveness

11

Verified
(in Coq)

[Oakland’15]

 [POPL’14]

• information flow control (IFC)

• monitor self-protection

• protected compartments

• dynamic sealing

• heap memory safety

• code-data separation

• control-flow integrity (CFI)

• taint tracking

Expressiveness

Verified
(in Coq)

Evaluated
(<10% runtime overhead)

[Oakland’15]

 [POPL’14]

[ASPLOS’15]

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

12

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

12

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

SECOMP grand challenge

Use micro-policies to build the first efficient formally

secure compilers for realistic programming languages

12

1. Provide secure semantics for low-level languages

– C with protected components and memory safety

2. Enforce secure interoperability with lower-level code

– ASM, C, and F* [F* = ML + verification]

Formally verify: full abstraction

13

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

13

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

Formally verify: full abstraction

13

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

component

component

not
enough

e.g. arbitrary
machine code

Formally verify: full abstraction

13

 high-level
 attacker

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

e.g. arbitrary
machine code

Formally verify: full abstraction

13

 high-level
 attacker

 low-level
 attacker

source

target

compiler

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

component

not
enough

no extra power protected e.g. arbitrary
machine code

Formally verify: full abstraction

13

 high-level
 attacker

source

Benefit: sound security reasoning in the source language
 forget about compiler chain (linker, loader, runtime system)
 forget that libraries are written in a lower-level language

secure

secure

program behavior

program behavior

compiler
correctness

(e.g. CompCert)

holy grail of secure compilation, enforcing abstractions all the way down

full
abstraction

component

not
enough *folklore

Fully abstract compilation, definition

14

 low-level
 attacker

1st high-level
component

1st compiled
component

low-level
attacker ∃ .

compiler

Fully abstract compilation, definition

14

 low-level
 attacker

1st high-level
component

1st compiled
component

 low-level
 attacker

2nd high-level
component

2nd compiled
component

low-level
attacker ∃ . ≁

compiler compiler

Fully abstract compilation, definition

14

 high-level
 attacker

 low-level
 attacker

1st high-level
component

1st compiled
component

 high-level
 attacker

 low-level
 attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker ∃

low-level
attacker ∃

⇒

.

. ≁

compiler compiler

Fully abstract compilation, definition

14

 high-level
 attacker

 low-level
 attacker

1st high-level
component

1st compiled
component

 high-level
 attacker

 low-level
 attacker

2nd high-level
component

2nd compiled
component

≁
high-level
attacker ∃

low-level
attacker ∃

⇒

.

. ≁

compiler compiler

SECOMP: achieving full abstraction at scale

15

miTLS*
F* language

(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

15

miTLS*

SecF* +
SecML

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

15

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

15

miTLS*

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

SECOMP: achieving full abstraction at scale

15

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

15

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

15

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

15

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

SECOMP: achieving full abstraction at scale

15

miTLS*

CompSec+

SecF* +
SecML

memory safe
C component

protecting component boundaries

legacy C
component

CompSec

ASM
component

F* language
(ML + verification)

 C language
+ memory safety
+ components

ASM language
(RISC-V + micro-policies)

protecting higher-level abstractions

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

16

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

16

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing

– component separation

– type-safe procedure call and return discipline

16

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing

– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– extending full abs. to mutual distrust + unsafe source
16

Protecting component boundaries

• Add mutually distrustful components to C

– interacting only via strictly enforced interfaces

• CompSec compiler chain (based on CompCert)

– propagate interface information to produced binary

• Micro-policy simultaneously enforcing

– component separation

– type-safe procedure call and return discipline

• Interesting attacker model

– extending full abs. to mutual distrust + unsafe source
16 Recent preliminary work, joint with Yannis Juglaret et al

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

pc

memory

C1

C2

... r
@n

registers

Store ra → ⋆rm

cross-component call
only allowed at EntryPoint

stack level
current color

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

ra

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

pc ...
@(n+1)

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

ra

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

pc ...
@(n+1)

linear return capability

changed color

increment

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra → ⋆rm

linear return capability

[Towards a Fully Abstract Compiler Using Micro-Policies, Juglaret et al, TR 2015]

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

pc ra rm
@(n+1)

@Ret n

registers

Store ra → ⋆rm

linear return capability

loads and stores to the same
component always allowed

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

pc ra rm
@(n+1)

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

pc ra rm
@(n+1)

invariant:
at most one
return capability
per call stack level

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

Compartmentalization micro-policy

17

Jal r

...@EntryPoint

...

...

...

Load ⋆rm → ra

Jump ra

memory

C1

C2

@Ret n

registers

Store ra → ⋆rm

linear return capability @Ret n

invariant:
at most one
return capability
per call stack level

pc ra rm
@(n+1)

cross-component
return only allowed
via return capability

Secure compartmentalizing compilation (SCC)

18

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓
↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation (SCC)

18

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 ↓ ↓ ↓ ↓ ↓ ≁ L

↯ ↯ ↯ ↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation (SCC)

18

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

∀ low-level attack from compromised C2↓, C4↓, C5↓

∃ high-level attack from some fully defined A2, A4, A5

≁ L

≁ H

↯ ↯ ↯ ↯ ↯ ↯

∀compromise scenarios.

Secure compartmentalizing compilation (SCC)

18

i1 i2 i3 i4 i5

C1 C2 C3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

C1 A2 C3 A4 A5

i1 i2 i3 i4 i5

D1 C2 D3 C4 C5 ↓ ↓ ↓ ↓ ↓

i1 i2 i3 i4 i5

D1 A2 D3 A4 A5

∀ low-level attack from compromised C2↓, C4↓, C5↓

∃ high-level attack from some fully defined A2, A4, A5

≁ L

≁ H

↯ ↯ ↯ ↯ ↯ ↯

∀compromise scenarios.

follows from “structured full abstraction
 for unsafe languages” + “separate compilation”

[Beyond Good and Evil, Juglaret, Hritcu, et al, CSF’16]

Protecting higher-level abstractions

19

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

Protecting higher-level abstractions

19

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

Protecting higher-level abstractions

19

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,

parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

Protecting higher-level abstractions

19

• ML abstractions we want to enforce with micro-policies

– types, value immutability, opaqueness of closures,
parametricity (dynamic sealing), GC vs malloc/free, ...

• F*: enforcing full specifications using micro-policies

– some can be turned into contracts, checked dynamically

– fully abstract compilation of F* to ML trivial for ML interfaces

(because F* allows and tracks effects, as opposed to Coq)

• Limits of purely-dynamic enforcement

– functional purity, termination, relational reasoning

– push these limits further and combine with static analysis

SECOMP focused on dynamic enforcement
but static analysis could help too

• Improving efficiency
– removing spurious checks

– just that by using micro-policies our
compilers add few explicit checks

– e.g. turn off memory safety checking for a statically memory
safe component that never sends or receives pointers

20

SECOMP focused on dynamic enforcement
but static analysis could help too

• Improving efficiency
– removing spurious checks

– just that by using micro-policies our
compilers add few explicit checks

– e.g. turn off memory safety checking for a statically memory
safe component that never sends or receives pointers

• Improving transparency
– allowing more safe behaviors

– e.g. we could statically detect which copy of the
linear return capability the code will use to return
(in this case static analysis untrusted)

20

Micro-policies:
remaining fundamental challenges

21

Micro-policies:
remaining fundamental challenges

• Micro-policies for C and ML

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

21

Micro-policies:
remaining fundamental challenges

• Micro-policies for C and ML

– needed for vertical compiler composition

– will put micro-policies in the hands of programmers

• Secure micro-policy composition

– micro-policies are interferent reference monitors

– one micro-policy’s behavior can break another’s guarantees

• e.g. composing anything with IFC can leak

21

Beyond full abstraction

• Is full abstraction always the right notion of secure
compilation? The right attacker model?

22

Beyond full abstraction

• Is full abstraction always the right notion of secure
compilation? The right attacker model?

• Similar properties

– secure compartmentalizing compilation (SCC)

– preservation of hyper-safety properties [Garg et al.]

22

Beyond full abstraction

• Is full abstraction always the right notion of secure
compilation? The right attacker model?

• Similar properties

– secure compartmentalizing compilation (SCC)

– preservation of hyper-safety properties [Garg et al.]

• Strictly weaker properties (easier to enforce!):

– robust compilation (integrity but no confidentiality)

22

Beyond full abstraction

• Is full abstraction always the right notion of secure
compilation? The right attacker model?

• Similar properties

– secure compartmentalizing compilation (SCC)

– preservation of hyper-safety properties [Garg et al.]

• Strictly weaker properties (easier to enforce!):

– robust compilation (integrity but no confidentiality)

• Orthogonal properties:

– memory safety (enforcing CompCert memory model)

22

What secure compilation adds over
compositional compiler correctness

• mapping back arbitrary low-level contexts

• preserving integrity properties

– robust compilation phrased in terms of this

• preserving confidentiality properties

– full abstraction and preservation of
hyper-safety phrased in terms of this

• stronger notion of components and interfaces

– secure compartmentalizing compilation adds this

23

 Verification and testing

• So far all secure compilation work on paper

– but one can’t verify an interesting compiler on paper

24

 Verification and testing

• So far all secure compilation work on paper

– but one can’t verify an interesting compiler on paper

• SECOMP will use proof assistants: Coq and F*

24

 Verification and testing

• So far all secure compilation work on paper

– but one can’t verify an interesting compiler on paper

• SECOMP will use proof assistants: Coq and F*

• Reduce effort

– better automation (e.g. based on SMT like in F*)

– integrate testing and proving (QuickChick and Luck)

24

 Verification and testing

• So far all secure compilation work on paper

– but one can’t verify an interesting compiler on paper

• SECOMP will use proof assistants: Coq and F*

• Reduce effort

– better automation (e.g. based on SMT like in F*)

– integrate testing and proving (QuickChick and Luck)

• Problems not just with effort/scale

– devising good proof techniques for full abstraction
is a hot research topic of it’s own

24

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

 25

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C, ML, F*)

25

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, proof techniques

– secure composition, micro-policies for C and ML

25

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, proof techniques

– secure composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

25

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, proof techniques

– secure composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

25

SECOMP in a nutshell

• We need more secure languages, compilers, hardware

• Key enabler: micro-policies (software-hardware protection)

• Grand challenge: the first efficient formally secure compilers

 for realistic programming languages (C, ML, F*)

• Answering challenging fundamental questions

– attacker models, proof techniques

– secure composition, micro-policies for C and ML

• Achieving strong security properties like full abstraction

+ testing and proving formally that this is the case

• Measuring & lowering the cost of secure compilation

• Most of this is vaporware at this point but ...

– building a community, looking for collaborators, and hiring

... in order to try to make some of this real 25

• Looking for excellent interns, PhD students,
PostDocs, starting researchers, and engineers

• Prosecco can also support outstanding
candidates in the CR2 competition

26

27

Collaborators & Community
• Current collaborators from Micro-Policies project

– UPenn, MIT, Portland State, Draper Labs

27

Collaborators & Community
• Current collaborators from Micro-Policies project

– UPenn, MIT, Portland State, Draper Labs

• Looking for additional collaborators

– Several other researchers working on secure compilation

• Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

– Amal Ahmed coming to Paris for 1 year sabbatical (from 09/2017)

27

Collaborators & Community
• Current collaborators from Micro-Policies project

– UPenn, MIT, Portland State, Draper Labs

• Looking for additional collaborators

– Several other researchers working on secure compilation

• Deepak Garg (MPI-SWS), Frank Piessens (KU Leuven),

Amal Ahmed (Northeastern), Cedric Fournet & Nik Swamy (MSR)

– Amal Ahmed coming to Paris for 1 year sabbatical (from 09/2017)

• Secure compilation meetings (very informal)

– 1st at INRIA Paris on August 2016

– 2nd in Paris on 15(?) January 2017 ... maybe at UPMC

– build larger research community, identify open problems,

bring together communities (hardware, systems, security,

 languages, verification, ...)

Questions for Gallium

• What do you think? Is this plan outrageous?

• Would CompCert be a good base for some of this?

• Is there any plan for a RISC-V backend for CompCert?

• Is anyone from Gallium interested in working on
secure compilation?

28

