Vous pouvez vous abonner à nos annonces de séminaires http://gallium.inria.fr/seminaires/ S E M I N A I R E __ / _` _ / / o / ) __) / / / / / /\/| (___/ (_/ (_ (_ / (__/ / | I N R I A - Paris 2 rue Simone Iff (ou: 41 rue du Charolais) Salle Lions 2, bâtiment C VENDREDI 2 septembre, 10h30 -------------- Catalin Hritcu -------------- Inria Paris ============================================================ Efficient Formally Secure Compilers to a Tagged Architecture ============================================================ Severe low-level vulnerabilities abound in today's computer systems, allowing cyber-attackers to remotely gain full control. This happens in big part because our programming languages, compilers, and architectures were designed in an era of scarce hardware resources and too often trade off security for efficiency. The semantics of mainstream low-level languages like C is inherently insecure, and even for safer languages, establishing security with respect to a high-level semantics does not guarantee the absence of low-level attacks. Secure compilation using the coarse-grained protection mechanisms provided by mainstream hardware architectures would be too inefficient for most practical scenarios. This talk will present a new 5 year project aimed at leveraging emerging hardware capabilities for fine-grained protection to build the first, efficient secure compilers for realistic programming languages, both low-level (the C language) and high-level (ML and F*, a dependently-typed variant). These compilers will provide a secure semantics for all programs and will ensure that high-level abstractions cannot be violated even when interacting with untrusted low-level code. To achieve this level of security without sacrificing efficiency, our secure compilers will target a tagged architecture, which associates a metadata tag to each word and efficiently propagates and checks tags according to software-defined rules. Formally, our goal is full abstraction with respect to a secure high-level semantics. This strong property is complementary to compiler correctness and ensures that no machine-code attacker can do more harm to securely compiled components than a component in the secure source language already could.