Vous pouvez vous abonner à nos annonces de séminaires http://gallium.inria.fr/seminaires/ S E M I N A I R E __ / _` _ / / o / ) __) / / / / / /\/| (___/ (_/ (_ (_ / (__/ / | I N R I A - Rocquencourt Amphi Turing du bâtiment 1 Lundi 14 avril, 10h30 ------------------- Tahina Ramananandro ------------------- Yale University =================================================================== Formal verification of stack-space bounds for compiled machine code =================================================================== Verified compilers guarantee the preservation of semantic properties and thus enable formal verification of programs at the source level. However, important quantitative properties such as memory and time usage still have to be verified at the machine level where interactive proofs tend to be more tedious and automation is more challenging. We developed a framework that enables the formal verification of stack-space bounds of compiled machine code at the C level. It consists of a verified CompCert-based compiler that preserves quantitative properties, a verified quantitative program logic for interactive stack-bound development, and a verified stack analyzer that automatically derives stack bounds during compilation. Thanks to our framework, stack-space bounds can now be proved at the source level without taking into account low-level details that depend on the implementation of the compiler. The compiler fills in these low-level details during compilation and generates a concrete stack-space bound that applies to the produced machine code. The verified stack analyzer is guaranteed to automatically derive bounds for code with non-recursive functions. It generates a derivation in the quantitative logic to ensure soundness as well as interoperability with interactively developed stack bounds.